
CameraV (InformaCam Project)

Amazon Aws
how to ssh into our instance
From the directory where you have our .pem file stored

ssh -i informacam.pem ubuntu@[OUR AWS IP]

That's all!

Please don't forget to log out when you're done working (money doesn't grow on trees!!!)

how to add this credential to your ssh configurations so you can edit files live via
SFTP
In your ssh config file (on a mac, ususally found in your home directory at: /UserName/.ssh/config

Host [OUR INSTANCE IP]
 IdentityFile /path/to/your/pem/file

If that's done correctly, you can open up your favorite text editor, and open an SFTP browser with the following:

host: [OUR INSTANCE IP]
username: ubuntu

there is no password required, because you have a .pem!

how to start up/stop the server:
In our amazon cloud instance, the server's files are usually located in /mnt/j3m/interface.
From the top level of the InformaCam-Server folder, run

mvn jetty:run

point your browser to http://127.0.0.1:8080/InformaCam-Server/
To stop, simply "command-c"

01/17/2018 1/81

http://127.0.0.1:8080/InformaCam-Server/

API Documentation
User
User.login(String username, String password)
returns: boolean
callback: User.loadSession() on success

User.logout(void)
returns: boolean
callback: User.unloadSession() on success

User.changePassword(String oldPassword, String newPassword, String confirmNewPassword)
returns: boolean
callback: User.reloadSession() on success

Search
Search.query(object parameters)
 returns: object[] derivative

Search.getSavedSearches(void)
returns: object[] savedSearch

Search.loadSearch(String savedSearch._id)
returns: object[] derivative

Search.saveSearch(object parameters, String alias)
returns: boolean

Media
Media.getAll(void)
returns: object[] mediaShortDescription

Media.load(String mediaShortDescription._id)
returns: object derivative

Media.annotate(String mediaShortDescription._id, int timeIn, int timeOut, String content, String user._id, long timestamp)
returns: boolean

Media.sendMessage(String medaShortDescription._id, long timestamp, String user._id, String content)
returns: boolean

Source
Source.view(String source._id)
returns: object source

Source.addDetail(String source._id, String key, object value)
returns: boolean

01/17/2018 2/81

InformaCam: App
Encryption
The app performs encryption on three levels at various points.

Media Hashing

Media Hashing is the process of fingerprinting a media source (image or video) by taking the cryptographic hash of its pixel values. A
group of pixels are run through an SHA-1 hashing algorithm, and the resulting string can be referenced at any point in order to verify
the authenticity of that media source.

Image Hashing

InformaCam hashes the entire image both before and after image redaction on save.
Each image region that has been either pixelated or redacted is hashed as well.

The image hashes are persisted in the metadata JSON object for each resulting image file.

Encrypted Storage

If the user specifies this in their preferences (under Original Image Handling), the original image may persist in the encrypted
database, rather than unencrypted on the SD card in the standard image gallery, or deleted entirely. Future iterations of the app will
include a file system for viewing the images stored in the ecrypted database.

PGP-Encrypted Metadata

The metadata JSON Object is encrypted to each trusted destination using PGP encryption. The resulting string is inserted into the
metadata of the image (above the JFIF header.)

Source
The repo for this project is here.

01/17/2018 3/81

https://github.com/guardianproject/InformaCam

Build and Target Notes
MyTouch (HTC Sense)

Android Version
2.3.4

Kernel Version
2.6.310-g4dcb781

Build number
2.32.531.1 CL209954 release-keys

Notes:
Incompatibility with bouncycastle API as currently built (11/7/12)

01/17/2018 4/81

Building/Installing System Dependencies for InformaCam Servers
Version 1 Full Installation Instructions
[[InformaCam Server Installation Instructions v1]]
[[InformaCam Server Installation Instructions 11.10 with GeoCouch]]

On Ubuntu
 1. Git
 2. Tor
 3. CouchDB
 4. LightTPD and PHP-5
 5. Maven 3 (note: do not use mirror listed at this site; instead, wget a distro from here)
 6. Jetty/CometD
 7. FFMPEG
 8. Java
 9. MATLAB Compiler Runtime. (which can be scored here)

The instructions omit that you need to include the following build flags:

-agreeToLicense yes -destinationFolder /path/you/choose -outputFile /path/you/choose/output_file.txt

Upon successful installation, you will be prompted to append some new paths to your LD_LIBRARY_PATH and XAPPLRESDIR
environment variables.

01/17/2018 5/81

http://git-scm.com/download/linux
https://www.torproject.org/docs/debian.html.en#ubuntu
http://wiki.apache.org/couchdb/Installing_on_Ubuntu
http://www.ubuntugeek.com/lighttpd-webserver-setup-with-php5-and-mysql-support.html
http://lukieb.wordpress.com/2011/02/15/installing-maven-3-on-ubuntu-10-04-lts-server/
http://www.apache.org/dyn/closer.cgi/maven/maven-3/3.0.4/binaries/apache-maven-3.0.4-bin.tar.gz
http://cometd.org/documentation/building
https://github.com/FFmpeg/FFmpeg
http://www.webupd8.org/2012/01/install-oracle-java-jdk-7-in-ubuntu-via.html
http://www.mathworks.com/help/compiler/working-with-the-mcr.html#bs6mb58
http://www.mathworks.com/supportfiles/MCR_Runtime/R2012a/MCR_R2012a_glnxa64_installer.zip

InformaCam Server Installation Instructions 11.10 with GeoCouch
Overview
 - Current beta is run:
 - these installation instructions assume a build on Ubuntu 11.10
 - given the purpose of InformaCam, it is highly recommended that this server run on a box that is under your complete control
 - Required Dependencies
 - Oracle Java 1.7
 - Maven
 - CometD /Jetty
 - FFMPEG (Git branch)
 - libx264
 - lighttpd
 - php5-cgi
 - Tor
 - CouchDB
 - GeoCouch

Installation Preparation
This installation document assumes you are on Ubuntu, and that the base directory will be home/ubuntu. Make a directory that will
house the packages you need to install, as well as a number of directories that will be used by the InformaCam system:

mkdir packages clients engine interface log scripts synergy

 - packages will house dependency applications that will need to be installed
 - clients will be used to hold the certificates of clients using InformaCam; any user/device interacting with the InformaCam system
will be required to have a key
 - interface will be the home for the web application that communicates with the client as well as the interface to the back-end
administrative UI
 - scripts will house various daemon scripts that will perform tasks useful to InformaCam system (e.g., setting up a new device
certificate, etc.)
 - synergy will house InformaCam's certificates

If this is a fresh install, remember to update your repositories.

sudo apt-get update

There are a few packages that you will need to assist you in the installation.

 - Install Git
If you don't already have Git installed, do so now:

sudo-apt get install git

Once Git is installed, you will have to give this instance a key (or use an existing one). See these instructions on setting up an SSH
key for Git:
https://help.github.com/articles/generating-ssh-keys

 - Install Curl

sudo apt-get install curl

Install Java

01/17/2018 6/81

https://help.github.com/articles/generating-ssh-keys

You will need to install Oracle Java to run InformaCam Server, as CometD relies on this version of Java. It is recommended you
install this version of Java before installing the other dependencies.
Note: InformaCam will be moving towards a standard Java version in future versions.

Follow the instructions provided here:
http://www.webupd8.org/2012/01/install-oracle-java-jdk-7-in-ubuntu-via.html

Make sure that Java version shows 1.7.0_10, and then update the variable to point to this version:

sudo gedit /etc/environment

Add/Update JAVA_HOME (double-check this path structure to make sure you have the correct path):

JAVA_HOME="/usr/lib/jvm/java-7-oracle"

Install Maven
You need the latest version of Maven installed. The working stack of InformaCam is using Maven 3.0.4 at the moment. apache.org
provides a list of distros: https://www.apache.org/dyn/closer.cgi/maven/maven-3/3.0.4/binaries/apache-maven-3.0.4-bin.tar.gz . Find a
working one, and copy the link to the mirror you have selected.

Go to the packages directory you created and begin the install:

cd /home/ubuntu/packages
wget {link to selected distro here}

Make sure the tar is downloaded and copy the file name.

tar -xvzf {the tar file's name}
rm {the tar file's name}
sudo mkdir /usr/local/apache-maven
sudo cp -R apache-maven-3.0.4/* /usr/local/apache-maven

Then update/add the following to your environment variables:

M2_HOME="/usr/local/apache-maven/apache-maven-3.0.4"
MAVEN_HOME="/usr/local/apache-maven/apache-maven-3.0.4"
M2="/usr/local/apache-maven/apache-maven-3.0.4/bin"

Save and close. Then update the PATH to include maven and the path to your Java install

export PATH=$PATH:$M2
export PATH=$PATH:$JAVA_HOME

Test that system now points to the correct version, and remove old versions if necessary:

mvn -version

Install CometD/ Jetty
Install the latest version of CometD. The version used in the current working stack of InformaCam is 2.4.3. You can link to the tar's
available at: hhttp://download.cometd.org/cometd-2.4.3-distribution.tar.gz

01/17/2018 7/81

http://www.webupd8.org/2012/01/install-oracle-java-jdk-7-in-ubuntu-via.html
https://www.apache.org/dyn/closer.cgi/maven/maven-3/3.0.4/binaries/apache-maven-3.0.4-bin.tar.gz

Go to the packages directory you created and begin the install:

cd /home/ubuntu/packages
wget {link to selected distro here}

Make sure the tar downloaded and copy the file name.

unpack tar -xvzf {the tar file's name}
rm {the tar file's name}
cd cometd-2.4.3
export PATH=$PATH:$JAVA_HOME
export PATH=$PATH:$M2

Then install CometD into Maven; the following will skip the test scripts (process takes a while):

sudo mvn clean install -DskipTests=true

Install FFmpeg
FFmpeg has branched. The official FFmpeg repo is incompatible with the requirements of InformaCam. So, you will need to use the
FFmpeg branch available on git, here: https://github.com/FFmpeg/FFmpeg

cd /home/ubuntu/packages
git clone git@github.com:FFmpeg/FFmpeg.git

You need to build FFmpeg. You will need to install GCC (compiler for these packages) and some other packages that will help with
build process. You also need the libx264 library:

sudo apt-get install gcc
sudo apt-get install build-essential
sudo apt-get install yasm
sudo apt-get install pkg-config
sudo apt-get install libx264-dev

Once these are installed (note: FFmpeg install takes a while):

cd FFmpeg
./configure
make
sudo make install
apt-get install ffmpeg2theora

install lighttpd
Install lighttpd, and a dependency, php5-cgi

cd /home/ubuntu/packages

01/17/2018 8/81

https://github.com/FFmpeg/FFmpeg

sudo apt-get install lighttpd
sudo apt-get install php-5cgi

To make sure lighttpd is installed, open a browser, and go to 127.0.0.1. You should see the lighttpd placeholder page. You will need to
make some changes to lighttpd configuration later, but you need to complete the Tor installation first.

Install Tor
Install a stable version of Tor. You will need to add the correct repository, and add the correct gpg key before install.

sudo gedit /etc/sources.list

At the end of your sources.list add the following (the distribution for 11.10 is oneiric), and add the following:

deb http://deb.torproject.org/torproject.org <DISTRIBUTION> main

Then run the following:

gpg --keyserver keys.gnupg.net --recv 886DDD89
gpg --export A3C4F0F979CAA22CDBA8F512EE8CBC9E886DDD89 | sudo apt-key add -
sudo apt-get update
sudo apt-get upgrade

The key ring project installed above will make sure you have the most current signing key. Now install Tor.

sudo apt-get update
sudo apt-get install tor tor-geoipdb

Install CouchDB
CouchDB is the database used by the InformaCam system. It should be noted that the database itself does not contain sensitive
information; it instead contains pointers to other files that do. InformaCam also uses Geocouch to perform geolocation searches of
media submissions. To use CouchDB with GeoCouch, install CouchDB from source.

cd ~/
mkdir couchDB

This directory will be used later by the InformaCam system.

Install the couchdb dependencies

sudo apt-get install g++
sudo apt-get install erlang-base erlang-dev erlang-eunit erlang-nox
sudo apt-get libmozjs185-dev
sudo apt-get build-dep couchdb
sudo apt-get install libmozjs-dev libicu-dev libcurl4-gnutls-dev libtool

Copy a link to a CouchDB distro from https://www.apache.org/dyn/closer.cgi?path=/couchdb/1.2.1/apache-couchdb-1.2.1.tar.gz

cd /home/ubuntu/packages
wget {link to selected distro here}
tar -zxvf apache-couchdb-1.2.1.tar.gz
cd apache-couchdb-1.2.1

Configure and build:

01/17/2018 9/81

https://www.apache.org/dyn/closer.cgi?path=/couchdb/1.2.1/apache-couchdb-1.2.1.tar.gz

./configure
make
sudo make install

At this point, change into the bin directory of couchdb and run sudo couchd. Go to http://localhost:5984/_utils to verify it is installed and
running correctly.

Install GeoCouch
Get geocouch

cd ~/packages
git clone -b couchdb1.2.x https://github.com/couchbase/geocouch.git
cd geocouch

Make geocouch

export COUCH_SRC=/home/ubuntu/packages/apache-couchdb-1.2.1/src/couchdb
make

Make sure it has built correctly. Change into the ebin and make sure there are a bunch of .beam files now there. Copy these files into
the ebin for couchdb.

sudo cp /your/path/to/geocouch/ebin/* /usr/local/lib/couchdb/erlang/lib/couch-1.2.1/ebin

Place the geocouch config file into the correct location in the couchdb install

cp /your/path/to/geocouch/etc/couchdb/default.d/geocouch.ini/ usr/local/etc/couchdb/default.d

Add the geocouch test scripts to couchdb install

cp /your/path/to/geocouch/share/www/script/test/* /usr/local/share/couchdb/www/script/test

And then add the following to lines of code to the end of the list of LoadTest at the bottom of this file:
/usr/local/share/couchdb/www/script/couch_test.js

loadTest("spatial.js");
loadTest("list_spatial.js");
loadTest("etags_spatial.js");
loadTest("multiple_spatial_rows.js");
loadTest("spatial_compaction.js");
loadTest("spatial_design_docs.js");
loadTest("spatial_bugfixes.js");
loadTest("spatial_merging.js");
loadTest("spatial_offsets.js");

Next test that GeoCouch is working with CouchDB, by creating a test document, and running a spatial query:

curl -X PUT http://127.0.0.1:5984/places
curl -X PUT -d '{"loc": [-122.270833, 37.804444]}' http://127.0.0.1:5984/places/oakland
curl -X PUT -d '{"loc": [10.898333, 48.371667]}' http://127.0.0.1:5984/places/augsburg
curl -X GET 'http://localhost:5984/places/_design/main/_spatial/points?bbox=0,0,180,90'

The bounding box request that you ran last should return the following:

01/17/2018 10/81

http://localhost:5984/_utils

@

{"update_seq":3,"rows":[{"id":"augsburg","bbox":[10.898333,48.371667,10.898333,48.371667],"geometry":{"type":"Point","coordinate
":[10.898333,48.371667]},"value":["augsburg",[10.898333,48.371667]]}
]}

@

Setup CouchDB for InformaCam
Documents created by CouchDB are automatically dumped in /usr/local/var/lib/couchdb. The best way to deal with this situation it to
create symbolic link to where want to store couchDB documents.

cd /usr/local/var/lib/couchdb
sudo su
ls

Make a copy of the couchDB documents directory into the couchdb directory you made earlier, and create a symbolic link.

mv * ~/couchdb
ln -s /usr/local/var/lib/couchdb/ /home/ubuntu/couchdb/

You then need to change the permissions on the CouchDB directory you created. First create a couchdb user and user group on the
server.

useradd -d /usr/local/var/lib/couchdb couchdb
sudo usermod -G couchdb -a 'couchdb'
cd /home/ubunutu
sudo chown -R couchdb:couchdb couchdb/

You will need to create an admin account in couchdb; then create an export of an alias of this account+ server (so you don't have to
keep typing it).

curl -X PUT http://127.0.0.1:5984/_config/admins/{your username here} -d '"{your password here}"' ""
CDB="http://{yourusernamehere}:{yourpasswordhere}@127.0.0.1:5984"
export CDB

You will also need to create 4 databases:

curl -X PUT $CDB/submissions
curl -X PUT $CDB/sources
curl -X PUT $CDB/derivatives
curl -X PUT $CDB/admin

You will later populate these databases with some InformaCam specific scripts.

Install InformaCam Server
Now install the back-end to the InformaCam System. This is housed on git. Install this in the interface directory you created.

cd ~/interface
git clone git@github.com:guardianproject/InformaCam-Server.git

01/17/2018 11/81

Install custom scripts
You can always pull the latest version of the scripts from git.

cd ~/
git clone git@github.com:harlo/InformaCam-Server-Package.git

Move the contents of the git repo to their appropriate directories on your installation.

cp -R ClientUploads/ ~/interface/
cd scripts
cp -R * ~/scripts
cd ../
cp add_new_clients.sh

You also need to create some views for each of the databases you created in CouchDB.

cd ~/scripts/couch
curl -X PUT -d @admin.json #CDB/admin/_design/admin
curl -X PUT -d @derivatives.json #CDB/derivatives/_design/derivatives
curl -X PUT -d @sources.json #CDB/sources/_design/sources
curl -X PUT -d @submissions.json #CDB/submissions/_design/submissions

And verify that your databases have been created

sudo ls ~/couchdb/couchdb

Setup local constants.
You will need to create a local constants file, in the following directory, and call it LocalConstants.java:
 /home/ubuntu/interface/InformaCam-Server/src/main/java/org/witness/informa/utils/

Inside of the file, put the following:

@
package org.witness.informa.utils;

public class LocalConstants {
 public final static String WEB_ROOT = "/home/ubuntu";
 public final static String USERNAME = "couchDB user name here";
 public final static String PASSWORD = "couchDB password here";
 public final static String ENGINE_ROOT = "/home/ubuntu/engine/";
 public static final Object SERVER_URL = "onion address here";
 public static final String SUDOER = null; //if server needs login password enter it here otherwise leave null
 public static final String SCRIPTS_ROOT = "/home/ubuntu/scripts";
 public static final String CLIENT_TEMP = "/home/ubuntu/clients/temp/";
 public static final String ORGANIZATION_NAME = "your_org_name_here";
 public static final class ScriptsRoot {
 public static final String PY = SCRIPTS_ROOT + "py/";
 }
 public static final String LOG_ROOT = "/home/ubuntu/log/application_server/";
 public static final String ASSETS_ROOT = "where you want to store assets";
}
@

Tor has not yet assigned an onion address (you will add this to your constants later). But at this point the InformaCam Server should
run:

01/17/2018 12/81

cd ~/interface/InformaCam-Server
export PATH=$PATH:$M2
export PATH=$PATH:JAVA_HOME
mvn jetty:run

Got to {your instance's uRL}:8080/InformaCam-Server. You should see the InformaCam Server running at this point.

Setup Hidden Services
While the server is running, you still need to setup the hidden services, using Tor, for the full system to work.

cd ~/
cd synergy
mkdir ca
mkdir ClientUpload

The ClientUpload directory is the corresponding directory that exists at interface/ClientUpload. But you need to make sure only the
Tor client can see this one, with permissions and adjusting the Tor settings:

sudo chown -R debian-tor:debian-tor ClientUpload/
sudo gedit /etc/tor/torrc

Scroll down to hidden services of the document and insert:

HiddenServiceDir /home/ubunutu/synergy/ClientUpload/
HiddenServicePort 443 127.0.0.1:443

You also need to setup the server to recognize something on port 443. First, open the php.ini file,

sudo gedit /etc/php5/cgi/php.ini

and add/uncomment the following:

cgi.fix_pathinfo =1

Next, you will need to open and update the lighttpd.conf file:

sudo gedit /etc/lighttpd/lighttpd.conf

and modify the server.modules array so it looks like (adding "mod_fastcgi"):
@
server.modules = (
"mod_access",
"mod_alias",
"mod_accesslog",
"mod_fastcgi",
 1. "mod_rewrite",
 2. "mod_redirect",
 3. "mod_status",
 4. "mod_evhost",
 5. "mod_compress",
 6. "mod_usertrack",
 7. "mod_rrdtool",
 8. "mod_webdav",
 9. "mod_expire",
 10. "mod_flv_streaming",
 11. "mod_evasive"

01/17/2018 13/81

)
@

Then skip to the end of the file, and add the following:

fastcgi.server = (".php" => ((
"bin-path" => "/usr/bin/php5-cgi",
"socket" => "/tmp/php.socket"
)))

Add the following to the end of the conf file and save and close:

$SERVER["socket"]=="localhost:443" {
 ssl.engine="enable"
}

You will need to come back to this a little later and update the server information, once you have the certificates established.

Setup Certification Authority
You will now setup the default keys for the InformaCam system, and modify settings to have InformaCam act as a certification
authority.

First, open the openssl.cnf file (located at /etc/ssl/). Modify the default to point to your server. Then create a manifest for your default
right below. The configuration should look something like this:

@

##
[ca]
default_ca = InformaCamServer
#default_ca = CA_default##

[InformaCamServer]

dir = /home/ubuntu/synergy/ca
database = $dir/index.txt
serial = $dir/serial
private_key = $dir/informacam.key
certificate = $dir/informacam.crt
default_days = 365
default_md = sha1
new_certs_dir = $dir/new_certs
policy = policy_match
@

Scroll down and change the following:

organizationalUnitName = match

Save and close. Then in InformaCam's certificate directory, create a directory for new certificates:

mkdir ~/synergy/ca/new_certs/
cd ~/synergy/ca

Make two files needed for the certificate authority to work:

sudo gedit ~/synergy/ca/serial
sudo gedit ~/synergy/ca/index.txt

01/17/2018 14/81

Inside of the serial file put

01

on the first line. Add a line break and save and close. Leave index.txt blank and have and close.

Next, create a certificate for the InformaCam system:

cd ~/synergy/ca/
sudo openssl genrsa -out informacam.key
openssl req -new -key informacam.key -out informacam.csr

At the prompts, enter the appropriate information. Then sign:

sudo openSSL x509 -req -days 365 -in informacam.csr -signkey informacam.key -out informacam.crt
sudo openssl ca -gencrl -out /etc/ssl/private/informacam.crl -crldays 7

You also need a key and certificate for your web server.

cd ~/synergy/ca
sudo openssl genrsa -out synergy.key
sudo openssl req -new -key synergy.key -out synergy.csr

At the prompts enter the appropriate information. Then you need to sign the new key with the InformaCam certificate, and cat them
into a pem file.

sudo openssl ca -in synergy.csr -cert informacam.crt -keyfile informacam.key -out synergy.crt
cat synergy.key synergy.crt > synergy.pem

Now that you have CA authority setup, update your lighttpd settings to include the following (the server name needs to be the name
you set in the server certificate):

$SERVER["socket"]=="localhost:443" {
 ssl.engine="enable"
 server.document-root="/home/ubuntu/interface/ClientUpload"
 server.name="InformaCam Server"
 ssl.pemfile="/home/ubuntu/synergy/ca/synergy.pem"
 ssl.ca-file="/home/ubuntu/synergy/ca/informacam.crt"
 ssl.verifyclient.activate="enable"
 ssl.verifyclient.enforce="enable"
}

Set Onion Address

01/17/2018 15/81

You now need to set your onion address. You will need to restart Tor and the web server for Tor to assign.

sudo /etc/init.d/tor restart
sudo /etc/init.d/lighttpd restart
sudo gedit ~/synergy/ClientUpload/hostname

Copy and paste the address in the hostname file once you have opened it. You need to add this address to the InformaCam java
constants file (that you had setup earlier).

gedit /home/ubuntu/interface/InformaCam-Server/src/main/java/org/witness/informa/utils/LocalConstants.java

Copy and paste the onion address (including 'https://' in front of the address in the hostname file), into the following:

public static final Object SERVER_URL = "https://onion address here";

Then open the Tor browser, and try going to the onion address. You should see a series of errors that you are doing the right thing.
First, in a javascript console, you should see that the connection was aborted. You should also be told that "This Connection is
Untrusted," since this is a self-signed certificate. Accept and Confirm the security exception. After you have accepted and confirmed,
you should see SSL handshake errors.

Create Client Certificate
If you are seeing these errors above, you are on the right path. The computer connecting (i.e., the client) to InformaCam system,
needs a certificate as well for the system to work. So, now you need to create a client certificate.

cd ~/clients
mkdir {name of client certificate is for}
cd {name of client certificate is for}
sudo openssl genrsa -des3 -out {name of client certificate is for}.key 1024
sudo openssl req -new -key {name of client certificate is for}.key -out {name of client certificate is for}.csr

At the prompts enter the appropriate information. Then you need to sign the new key with the synergy certificate, and cat them into a
pem file.

sudo openssl ca -in {name of client certificate is for}.csr -cert synergy.crt -keyfile synergy.key -out {name of client certificate is for}.crt
cat {name of client certificate is for}.key {name of client certificate is for}.crt > {name of client certificate is for}.pem

The pem file you will give to the client, to store in the appropriate location on their system.

Create Admin user
There are some useful scripts that you installed in a previous step, that you need to update some the path and certificate information
to run successfully.
 - new_client.py script is for when you want to add new user to informacam to use the system on their mobile device (i.e., record vid
and submit to repo)
 - new_admin.py is script to create new admin for informacam.

To make these scripts work you will need to update the constants.pi script to contain the accurate paths to the directories you have
set on your system.

cd ~/scripts
gedit constants.pi

Save and close

At this point there are no administrators within the InformaCam server, so once you have updated the paths, you should run the
following shortly after you have completed installation so a user can access the server:

01/17/2018 16/81

./new_admin.py "display name here", "user name here", "password here"

01/17/2018 17/81

InformaCam Server Installation Instructions v1
Overview
 - Current beta is run:
 - on Ubuntu 11.04/Natty
 - given the purpose of InformaCam, it is highly recommended that this server run on a box that is under your complete control
 - Required Dependencies
 - Oracle Java 1.7
 - Maven
 - CometD /Jetty
 - FFMPEG (Git branch)
 - libx264
 - lighttpd
 - php5-cgi
 - Tor
 - CouchDB

Installation Preparation
This installation document assumes you are on Ubuntu, and that the base directory will be home/ubuntu. Make a directory that will
house the packages you need to install, as well as a number of directories that will be used by the InformaCam system:

mkdir packages clients engine interface log scripts synergy

 - packages will house dependency applications that will need to be installed
 - clients will be used to hold the certificates of clients using InformaCam; any user/device interacting with the InformaCam system
will be required to have a key
 - interface will be the home for the web application that communicates with the client as well as the interface to the back-end
administrative UI
 - scripts will house various daemon scripts that will perform tasks useful to InformaCam system (e.g., setting up a new device
certificate, etc.)
 - synergy will house InformaCam's certificates

If this is a fresh install, remember to update your repositories.

sudo apt-get update

There are a few packages that you will need to assist you in the installation.

 - Install Git
If you don't already have Git installed, do so now:

sudo-apt get install git

Once Git is installed, you will have to give this instance a key (or use an existing one). See these instructions on setting up an SSH
key for Git:
https://help.github.com/articles/generating-ssh-keys

 - Install Curl

sudo apt-get install curl

Install Java
You will need to install Oracle Java to run InformaCam Server, as CometD relies on this version of Java. It is recommended you

01/17/2018 18/81

https://help.github.com/articles/generating-ssh-keys

install this version of Java before installing the other dependencies.
Note: InformaCam will be moving towards a standard Java version in future versions.

Follow the instructions provided here:
http://www.webupd8.org/2012/01/install-oracle-java-jdk-7-in-ubuntu-via.html

Make sure that Java version shows 1.7.0_10, and then update the variable to point to this version:

sudo gedit /etc/environment

Add/Update JAVA_HOME (double-check this path structure to make sure you have the correct path):

JAVA_HOME="usr/lib/jvm/java-7-oracle"

Install Maven
You need the latest version of Maven installed. The working stack of InformaCam is using Maven 3.0.4 at the moment. apache.org
provides a list of distros:https://www.apache.org/dyn/closer.cgi/maven/maven-3/3.0.4/. Find a working one, and copy the link to the
mirror you have selected.

Go to the packages directory you created and begin the install:

cd /home/ubuntu/packages
wget {link to selected distro here}

Make sure the tar is downloaded and copy the file name.

tar -xvzf {the tar file's name}
rm {the tar file's name}
sudo mkdir /usr/local/apache-maven
sudo cp -R apache-maven-3.0.4/* /usr/local/apache-maven

Then update/add the following to your environment variables:

M2_HOME="usr/local/apache-maven/apache-maven-3.0.4"
MAVEN_HOME="usr/local/apache-maven/apache-mave-3.0.4"
M="/usr/local/apache-maven/apache-maven-3.0.4/bin"
@

Also update the PATH to include /usr/local/apache-maven/apache-maven-3.0.4, and save and close.
Test that it points to the correct version, and remove old versions if necessary:

mvn -version

Install CometD/ Jetty
Install the latest version of CometD. The version used in the current working stack of InformaCam is 2.4.3. You can link to the tar's
available at: http://cometd.org/documentation/building

Go to the packages directory you created and begin the install:

cd /home/ubuntu/packages
wget {link to selected distro here}

01/17/2018 19/81

http://www.webupd8.org/2012/01/install-oracle-java-jdk-7-in-ubuntu-via.html
http://cometd.org/documentation/building

Make sure the tar downloaded and copy the file name.

unpack tar -xvzf {the tar file's name}
rm {the tar file's name}
cd cometd-2.4.3

Then install CometD into Maven; the following will skip the test scripts (process takes a while):

sudo mvn clean install -DskipTests=true

Install FFmpeg
FFmpeg has branched. The official FFmpeg repo is incompatible with the requirements of InformaCam. So, you will need to use the
FFmpeg branch available on git, here: https://github.com/FFmpeg/FFmpeg

cd /home/ubuntu/packages
git clone git@github.com:FFmpeg/FFmpeg.git

You need to build FFmpeg. You will need to install GCC (compiler for these packages) and some other packages that will help with
build process. You also need the libx264 library:

sudo apt-get install gcc
sudo apt-get install build-essential
sudo apt-get install yasm
sudo apt-get install pkg-config
sudo apt-get install libx264-dev

Once these are installed (note: FFmpeg install takes a while):

cd FFmpeg
./configure
make
sudo make install
apt-get install ffmpeg2theora

install lighttpd
Install lighttpd, and a dependency, php5-cgi

cd /home/ubuntu/packages
sudo apt-get install lighttpd
sudo apt-get install php-5cgi

To make sure lighttpd is installed, open a browser, and go to 127.0.0.1. You should see the lighttpd placeholder page. You will need to
make some changes to lighttpd configuration, but you will need to complete the Tor installation first.

Install Tor
Install a stable version of Tor. You will need to add the correct repository, and add the correct gpg key before install.

01/17/2018 20/81

https://github.com/FFmpeg/FFmpeg

sudo gedit /etc/sources.list

At the end of your sources.list add the following (the distribution for the current working stack of InformaCam is natty), and add the
key:

deb http://deb.torproject.org/torproject.org <DISTRIBUTION> main
gpg --keyserver keys.gnupg.net --recv 886DDD89
gpg --export A3C4F0F979CAA22CDBA8F512EE8CBC9E886DDD89 | sudo apt-key add -
apt-get update
apt-get install deb.torproject.org-keyring

The key ring project installed above will make sure you have the most current signing key. Now install Tor.

apt-get install tor

Install CouchDB
CouchDB is the database used by the InformaCam system. It should be noted that the database itself does not contain sensitive
information; it instead contains pointers to other files that do.

cd ~/
mkdir couchDB
sudo apt-get install couchdb

Documents created by CouchDB are automatically dumped in usr/var. The best way to deal with this situation it to create symbolic link
to where want to store couchDB documents.

@
cd /usr/local/var
sudo su
cd couchdb
ls
@code

Copy the version number of CouchDB that was just installed, make a copy in the couchDB directory you made earlier, and create a
symbolic link.

cd {past version # here}
mv *~/home/ubuntu/couchdb
ln -s /var/lib/couchdb/1.0.1/ /home/ubuntu/couchdb/

You then need to change the permissions on the CouchDB directory you created.

cd /home/ubunutu
chmod -R couchdb:couchdb couchdb/

You will need to create an admin account, and export an alias of this account+ server (so you don't have to keep typing it).

curl -X PUT http://127.0.0.1:5984/_config/admins/{your username here} -d '"{your password here}"' ""
CDB="http://{yourusernamehere}:{yourpasswordhere}@127.0.0.1:5984"
export CDB

You will also need to create 4 databases:

01/17/2018 21/81

curl -X PUT $CDB/submissions
curl -X PUT $CDB/sources
curl -X PUT $CDB/derivatives
curl -X PUT $CDB/admin

You will later populate these databases with some InformaCam specific scripts.

Install InformaCam Server
Now install the back-end to the InformaCam System. This is housed on git. Install this in the interface directory you created.

cd ~/interface
git clone git@github.com:guardianproject/InformaCam-Server.git

Install custom scripts
You can always pull the latest version of the scripts from git.

cd ~/
git clone git@github.com:harlo/InformaCam-Server-Package.git

Move the contents of the git repo to their appropriate directories on your installation.

cp -R ClientUploads/ ~/interface/
cd scripts
cp -R * ~/scripts
cd ../
cp add_new_clients.sh

You also need to create some views for each of the databases you created in CouchDB.

cd ~/scripts/couch
curl -X PUT -d @admin.json #CDB/admin/_design/admin
curl -X PUT -d @derivatives.json #CDB/derivatives/_design/derivatives
curl -X PUT -d @sources.json #CDB/sources/_design/sources
curl -X PUT -d @submissions.json #CDB/submissions/_design/submissions

And verify that your databases have been created

sudo ls ../../couchdb/

H2. Setup local constants.

You will need to create a local constants file, in the following directory, and call it LocalConstants.java:
 /home/ubuntu/interface/InformaCam-Server/src/main/java/org/witness/informacam/utils/

Inside of the file, put the following:

@
package org.witness.informa.utils;

public class LocalConstants {
 public final static String WEB_ROOT = "/home/ubuntu";

01/17/2018 22/81

 public final static String USERNAME = "couchDB user name here";
 public final static String PASSWORD = "couchDB password here";
 public static final Object SERVER_URL = "onion address here";
 public static final String SUDOER = null; //if server needs login password enter it here otherwise leave null
 public static final String SCRIPTS_ROOT = "/home/ubuntu/scripts";
 public static final String CLIENT_TEMP = "/home/ubuntu/clients/temp/";
 public static final String ORGANIZATION_NAME = "your_org_name_here";
 public static final class ScriptsRoot {
 public static final String PY = SCRIPTS_ROOT + "py/";
 }
 public static final String LOG_ROOT = "/home/ubuntu/log/application_server/";
}
@

Tor has not yet assigned an onion address (you will add this to your constants later). But at this point the InformaCam Server should
run:

mvn run jetty

Got to {your instance's uRL}:8080/InformaCam-Server. You should see the InformaCam Server running at this point.

Setup Hidden Services
While the server is running, you still need to setup the hidden services, using Tor, for the full system to work.

cd ~/
cd synergy
mkdir ca
mkdir ClientUpload

The ClientUpload directory is the corresponding directory that exists at interface/ClientUpload. But you need to make sure only the
Tor client can see this one, with permissions and adjusting the Tor settings:

sudo chown -R debian-tor:debian-tor ClientUpload/
sudo vi /etc/tor/torc

Scroll down to hidden services of the document and insert:

HiddenServiceDir /home/ubunutu/synergy/ClientUpload/
HiddenServicePort 443 127.0.0.1:443

You also need to setup the server to recognize something on port 443. First, open the php.ini file, and add/uncomment the following:

cgi.fix_pathinfo =1

Next, you will need to open and update the lighttpd.conf file located in home/ubuntu/etc/lighttpd. Add the following within the
server.modules array:

"mod_fastcgi"

Then skip to the end of the file, and add the following:

fastcgi.server = (".php" => ((

01/17/2018 23/81

 "bin-path"=>"/usr/bin/php5-cgi",
 "socket"=>"/tmp/php.socket"
)))

Add the following to the end of the conf file and save and close:

$SERVER["socket"]=="localhost:443" {
 ssl.engine="enable"
}

You will need to come back to this a little later and update the server information, once you have the certificates established.

Setup Certification Authority
You will now setup the default keys for the InformaCam system, and modify settings to have InformaCam act as a certification
authority.

First, open the openssl.cnf file (located at /etc/openssl/). Modify the default to point to your server. Then create a manifest for your
default right below. The configuration should look something like this:

@##
[ca]
default_ca = InformaCamServer
#default_ca = CA_default##

[InformaCamServer]

dir = /home/ubuntu/synergy/ca
database = $dir/index.txt
serial = $dir/serial
private_key = $dir/informacam.key
certificate = $dir/informacam.crt
default_days = 365
default_md = sha1
new_certs_dir = $dir/new_certs
policy = policy_match
@

Scroll down and change the following:

organizationalUnitName = match

Save and close. Then in InformaCam's certificate directory, create a directory for new certificates:

mkdir ~/synergy/ca/new_certs/

Next, create a certificate for the InformaCam system:

cd ~/synergy/ca/
sudo openssl genrsa -out informacam.key
openssl req -new -key informacam.key -out informacam.csr

At the prompts, enter the appropriate information. Then sign:

sudo openSSL x509 -req -days 365 -in informacam.csr -signkey informacam.key -out informacam.crt
sudo openssl ca -gencrl -out /etc/ssl/private/informacam.crl -crldays 7

01/17/2018 24/81

You also need a key and certificate for your web server.

cd ~/synergy/ca
sudo openssl genrsa -out synergy.key
sudo openssl req -new -key synergy.key -out synergy.csr

At the prompts enter the appropriate information. Then you need to sign the new key with the InformaCam certificate, and cat them
into a pem file.

sudo openssl ca -in synergy.csr -cert informacam.crt -keyfile informacam.key -out synergy.crt
cat synergy.key synergy.crt > synergy.pem

Now that you have CA authority setup, update your lighttpd settings to include the following (the server name needs to be the name
you set in the server certificate):

$SERVER["socket"]=="localhost:443" {
 ssl.engine="enable"
 server.document-root="/home/ubuntu/interface/ClientUpload"
 server.name="InformaCam Server"
 ssl.pemfile="/home/ubuntu/synergy/ca/synergy.pem"
 ssl.ca-file="/home/ubuntu/synergy/ca/informacam.crt"
 ssl.verifyclient.activate="enable"
 ssl.verifyclient.enforce="enable"
}

Set Onion Address
You now need to set your onion address. You will need to restart Tor and the web server for Tor to assign.

sudo /etc/init.d/tor restart
sudo /etc/init.d/lighttpd restart
cd ~/synergy/ClientUpload
sudo ls -la
sudo gedit hostname

You should see the debian-tor hostname and private_key file when you ls. Copy and paste the address in the hostname once you
have opened it. You need to add this address to the InformaCam java constants file (that you had setup earlier).

gedit /home/ubuntu/interface/InformaCam-Server/src/main/java/org/witness/informacam/utils/LocalConstants.java

Copy and paste the onion address (including 'https://' in front of the address in the hostname file), into the following:

public static final Object SERVER_URL = "https://onion address here";

Then open the Tor browser, and try going to the onion address. You should see a series of errors that you are doing the right thing.
First, in a javascript console, you should see that the connection was aborted. You should also be told that "This Connection is
Untrusted," since this is a self-signed certificate. Accept and Confirm the security exception. After you have accepted and confirmed,
you should see SSL handshake errors.

Create Client Certificate
If you are seeing these errors above, you are on the right path. The computer connecting (i.e., the client) to InformaCam system,
needs a certificate as well for the system to work. So, now you need to create a client certificate.

cd ~/clients

01/17/2018 25/81

mkdir {name of client certificate is for}
cd {name of client certificate is for}
sudo openssl genrsa -des3 -out {name of client certificate is for}.key 1024
sudo openssl req -new -key {name of client certificate is for}.key -out {name of client certificate is for}.csr

At the prompts enter the appropriate information. Then you need to sign the new key with the synergy certificate, and cat them into a
pem file.

sudo openssl ca -in {name of client certificate is for}.csr -cert synergy.crt -keyfile synergy.key -out {name of client certificate is for}.crt
cat {name of client certificate is for}.key {name of client certificate is for}.crt > {name of client certificate is for}.pem

The pem file you will give to the client, to store in the appropriate location on their system.

Create Client Certificate
There are some useful scripts that you installed in a previous step, that you need to update some the path and certificate information
to run successfully.
 - new_client.py script is for when you want to add new user to informacam to use the system on their mobile device (i.e., record vid
and submit to repo)
 - new_admin.py is script to create new admin for informacam. (right now there are no administrators, so you should run this one
shortly after you have completed installation so a user can access the server)

To make these scripts work you will need to update the constants.pi script to contain the accurate paths to the directories you have
set on your system.

cd ~/scripts
gedit constants.pi

Save and close

01/17/2018 26/81

Desktop
Source
The repo for this project is currently here.

01/17/2018 27/81

https://github.com/harlo/InformaCamDesktop

Forms
In any image or video, groups of form responses can be inserted via the UI. Regions can have bounds, like x/y coordinates and
timestamps, but they do not have to, as is the case with the top-level annotations. So, now, no matter what your UI does, you can
append form objects to media by adding the IForm object to the IRegion's associatedForms list.

The resulting JSON output for the IMedia object is below. (Since this media object contains a top-level region, that region's bounds
are all 0s and -1 for its timestamp.)

{dimEntry":{
 "originalHash":"c478b5808d14c273e5a58f0389dfd84225f1dd38",
 "id":16011,
 "exif":{
 "exposure":"0.030",
 "orientation":1,
 "flash":-1,
 "model":"GT-N7100",
 "iso":"125",
 "location":[
 40.70903778076172,
 -73.96454620361328
],
 "width":1280,
 "whiteBalance":0,
 "aperture":"2.8",
 "focalLength":-1,
 "timestamp":"2013:07:11 15:27:59",
 "duration":0,
 "height":960,
 "make":"SAMSUNG"
 },
 "timeCaptured":1373570879000,
 "name":"20130711_152759.jpg",
 "uri":"content:\/\/media\/external\/images\/media\/16011",
 "mediaType":"image\/jpeg",
 "thumbnailName":"20130711_152759_thumb.jpg",
 "size":300682
},
"bitmap":"\/c478b5808d14c273e5a58f0389dfd84225f1dd38\/20130711_152759.jpg",
"isNew":false,
"width":1280,
"lastEdited":0,
"bitmapPreview":"\/c478b5808d14c273e5a58f0389dfd84225f1dd38\/20130711_152759_preview.jpg",
"bitmapThumb":"\/c478b5808d14c273e5a58f0389dfd84225f1dd38\/20130711_152759_thumb.jpg",
"genealogy":{
 "dateCreated":0,
 "hashes":[
 "2f3ea762f6872fe9df8e7878defdd06f"
]
},
"associatedRegions":[
 {
 "timestamp":0,
 "id":"98f2eeb72925c5381045d3e40fa9dd2c",
 "bounds":{
 "startTime":-1,
 "displayTop":0,
 "height":0,
 "width":0,
 "displayLeft":0,
 "left":0,
 "endTime":-1,
 "displayWidth":0,
 "top":0,
 "displayHeight":0

01/17/2018 28/81

 },
 "associatedForms":[
 {
 "path":"\/forms\/493dde68c49e6b99556186a3e776d705.xml",
 "title":"iWitness Free Text Annotations",
 "answerPath":"\/c478b5808d14c273e5a58f0389dfd84225f1dd38\/form_t1373571027245",
 "namespace":"iWitness Free Text Annotations"
 },
 {
 "path":"\/forms\/e9a480caa90d22e4607f84a5a1ae20c8.xml",
 "title":"iWitness Free Audio Annotation",
 "answerPath":"\/c478b5808d14c273e5a58f0389dfd84225f1dd38\/form_a1373571027245",
 "namespace":"iWitness Free Audio Annotation"
 }
]
 }
],
"height":960,
"bitmapList":"\/c478b5808d14c273e5a58f0389dfd84225f1dd38\/20130711_152759_list.jpg",
"_id":"48401d59cc2f8201817b13ce7d2dfca9",
"rootFolder":"\/c478b5808d14c273e5a58f0389dfd84225f1dd38",
"associatedCaches":
 [
 "\/informaCaches\/1373571026954_1373571048312",
 "\/informaCaches\/1373571064283_1373571079767",
 "\/informaCaches\/1373571246205_1373571254371",
 "\/informaCaches\/1373571379026_1373571401690",
 "\/informaCaches\/1373571611503_1373571620318",
 "\/informaCaches\/1373571935013_1373571937287",
 "\/informaCaches\/1373572240795_1373572282778",
 "\/informaCaches\/1373572438709_1373572443901"
]
}

In the output above, the answers to the forms are found in the "answerPath" field, and are inflated into the J3M Data on export.

These forms are javarosa/open data kit compliant (http://www.kobotoolbox.org/) which was a decision I made last year at the RFA
conference based on discussions with Globaleaks and Martus' teams: Martus was already using ODK, so we all decided we'd adhere
to that standard.

The forms in EyeWitness (I'm attaching them) are based off of specific questions the IBA said they wanted users to answer about
each submission. The forms come bundled with the ICTD file, so they're available to the app whenever a trusted destination file is
imported. When the media is exported, these values are extended to include the answer data, not a pointer to a file (which is only
locally on the device).

When j3m data is exported, you'd see this instead:

{
 "timestamp":1368290496334,
 "regionBounds":{
 "displayTop":200,
 "height":240,
 "width":240,
 "displayLeft":200,
 "left":400,
 "displayWidth":120,
 "top":400,
 "displayHeight":120
 },
 "index":0,
 "id":"98f2eeb72925c5381045d3e40fa9dd2c",
 "associatedForms":[
 {
 "namespace":"iWitness Free Text Annotations",
 "answerData": {
 "iW_free_text":"i'm on a boat!"

01/17/2018 29/81

http://www.kobotoolbox.org/

 }
 }
]
},
{
 "timestamp":1368290496742,
 "id":"98f2eeb72925c5381045d3e40fa9dd2c",
 "associatedForms":[
 {
 "namespace":"iWitness Free Text Annotations",
 "answerData": {
 "iW_free_text":"this is the boat on the sea."
 }
 }
]
}

The first object pertains to a region of interest within the image, and has a bounds object and an index. The second object is missing
those two fields, and therefore can be considered to pertain to the entire media object. InformaCam does not rely on these
differences, so it's up to a 3rd-party app to make use of this differentiation if necessary. The library has two helper methods:
IMedia.getInnerLevelRegions() and IMedia.getTopLevelRegion() so developers can make use of this data in-app.

Files
iWitness_free_audio.xml 1.33 KB 07/12/2013 harlo
iWitness_free_text.xml 1.41 KB 07/12/2013 harlo
iWitness_v_1_0.xml 4.8 KB 07/12/2013 harlo

01/17/2018 30/81

InformaCam Server Standard Video Resolutions
Enabling “responsive” design on the InformaCam server, for video playback (the recommended method for best playback quality) does not fit within the
current implementation of the front-end UX. The front-end is using the Sammy framework, and an initial capture of window size (at time of load) to
calculate a controlled px size of all divs that are in the Sammy “tree”. This initial calculation of screen size, and its related tightly “controlled” pixel
layout becomes important to accurately locate video and image annotations within their applicable image/video frames. Therefore, the InformaCam
server / UX will not attempt responsive video playback, and will instead control for standard screen sizes; and serve up video that has been
compressed into an appropriate standard size and which fits within the available screen space.
Referring to “Android Supported Media Formats” (see [https://developer.android.com/guide/appendix/media-formats.html]), the following supported file
types should be considered, when Android devices are submitting video to InformaCam:
 - 3GPP
 - MPEG-4
 - MPEG-TS
 - WebM
 - Matroska

Based on these file formats the following compression formats and/or related specification should be considered:

File Format Standard/Specification Android Suggested Format Notes
3GPP H.263
MPEG-4 H.264 x
MPEG-TS MPEG-2
WebM H.264
Matroska Inherits from multiple including

3GPP, MPEG-4, MPEG-TS and
WebM

Based on these file formats the following compression formats and/or related specification should be considered:

Incoming format px*
3GPP

128 X 96
176 x 144
352 x 288
704 x 575

MPEG-4, WebM RECOMMENDED ANDRODID
FRAME SIZES; APPLY as
DEFAULT
176 x 144
480 x 360
1280 x 720

MPEG-TS
720 × 576
720 × 480
704 × 576
704 × 480
352 × 576
352 × 480
352 × 288
352 × 240

Matraska
Inherits from parent format,
android supported above

01/17/2018 31/81

https://developer.android.com/guide/appendix/media-formats.html]

One-Time Pads for Authentication
Using the 1xPad twitter application, trusted destination services may generate unique and statistically random upload tokens that may be used to
authenticate media uploads.

Each Trusted Destination server runs a daemon that samples the Twitter firehose for a random array of tweets, which are used as One-Time Pads for
authentication.

01/17/2018 32/81

The InformaCam Wiki
Updates
 - [[InformaCam Dashboard v2 Design]]
 - InformaCam "Getting Started" user guide: https://guardianproject.info/informa/gettingstarted

Overview
InformaCam, part of the SecureSmartCam suite of mobile apps, is a tool that allows users to embed expansive metadata into video or still images;
encrypt media to trusted destinations using PGP; and securely upload media to trusted destinations using Tor. Our current work encompasses the
following:

 - an Android [[app]] capable of generating images and video according to the InformaCam specification
 - desktop software that can decrypt, decode, and visualize media generated by the app
 - a [[system]] of safely accepting and storing InformaCam media as submitted by app users

These modules are enumerated in our various [[Stack]] documents in this wiki.

Two additional critical components of the InformaCam system are the metadata formats we use for media and organizations:

 - [[JSON Mobile Media Metadata (J3M)]]
 - [[InformaCam Trusted Destination (ICTD)]]

Partners
This project is a collaboration between Witness, the International Bar Association, and Guardian Project. Other collaborators may attach themselves to
the project at any time.

Source
The InformaCam source is open and can be found on Github:
Android
 - InformaApp Default App: https://github.com/guardianproject/InformaApp
 - InformaCore Library: https://github.com/guardianproject/InformaCore
Desktop/Server
 - Unveillance Engine: https://github.com/harlo/Unveillance
 - Unveillance Viewer: https://github.com/harlo/UnveillanceViewer

Quick Links
Read more about the following topics:
 - Encryption
 - Uploading Media from InformaCam
 - [[How InformaCam Works]] (old copy from the website app page)

Supporting Information
 - [[Supported Devices]]
 - [[Secure Deployment Notes]]
 - Public Beta 1: November 2013
 - Latest presentation deck

01/17/2018 33/81

https://guardianproject.info/informa/gettingstarted
https://dev.guardianproject.info/projects/ssc
https://www.torproject.org/docs/android.html.en
https://github.com/guardianproject/InformaApp
https://github.com/guardianproject/InformaCore
https://github.com/harlo/Unveillance
https://github.com/harlo/UnveillanceViewer
https://dev.guardianproject.info/projects/informacam/wiki/App#Encryption
https://dev.guardianproject.info/projects/informacam/wiki/Upload_Media
https://docs.google.com/presentation/d/1V3kRDDg9eG95rRZPxP9BClgRffNs2l3u2QIo4WtqFvo/edit?usp=sharing

API Design
The API for the InformaCam API will be RESTful, and built using python/tornado. The initial implementation will focus on "modules" speaking to each
other. The initial expected modules/components are:

- storage server
- intake service (cert authority + upload)
- API service (tornado/python + couchdb REST calls with JSON returns)
- Phone module
- Web admin front-end (sammy, custom javascript, etc.)

Modules wishing to PUT/GET using the API must have a registered certificate with the InformaCam Server intake service in order to be granted
access. This initial implemenatation will utilized this as its authorization mechanism during this initial implementation, instead trying to develop out a
public-facing API that could conceivably require authorization approaches like OAuth, etc.

The web admin front-end will be as divorced from python as feasible, removing the majority of dependencies (e.g., avoiding python templates, etc.).

Get Object Record(s)
Path Method Description
/v1/derivative GET Get a media object's derivative

record(s) by id

id parameter must be provided or will return as bad request.

Parameters

Name Data Type Required/Optional Description Use
id string required unique id(s) used to

identify a media object
derivative record within
InformaCam system's
database

By default (when no
additional parameters are
added) an array for each
of the objects is returned
that includes the following:
_id, alias, media type, time
record was created, save
location, submitted by,
derivative thumbnail. To
have additional metadata
returned additional
parameters must be
supplied

sort string Optional sort order of media records
returned

Sort by (default date media
is created): *
dateSubmitted *
dateCreated (date record
created) * submitter

not_truncated boolean optional if true return full derivative
record

geneology boolean optional if set to true, full geneology
information will be returned

metadata returned: device
id, ownership type,
datetime media created
on, datetime submitted,
about the device, and
device integrity

description boolean optional if true returns custom
categorical metadata
added on server side

data returned is dependent
on custom metadata
implemented by
organization (e.g.,
categorization, description,

form boolean optional if true returns form data
submitted through mobile
device

dependent on
implementation

annotations boolean optional if true returns annotation
data within the J3M

locations boolean optional if true returns locations
array (multiple lat/long
locations recorded with J3M
at time media is being
recorded)

keywords boolean optional if true returns array of
keywords

region_bounds boolean optional if true returns array of

01/17/2018 34/81

region bounds

Example
/v1/derivative?id=1,2,3&truncated=false&sort=dateCreated

Returned

Truncated example{

}

Full Example{

}

Search Object Records
Path Method Description
/v1/search GET Search media records

Records returned in a search will always be truncated, and will include the following: _id, alias, media type, time record was created, save location,
submitted by, derivative thumbnail. Additional parameters will be provided dependent on the parameters requested.

At least one of the following parameters (except limit) but be supplied or will return bad request.

Parameters

Name Data Type Required/Optional Description Use
limit int optional identify number of records

to return
sort string Optional sort the order of media

records returned
Sort by (default is
relevancy rating): *
relevancy * dateSubmitted
* dateCreated (date record
created) * submitter

term string optional keyword search object
records

dateCreated timestamp (?) optional search by date media was
created

dateSubmitted timestamp (?) optional search by date media was
submitted

type string optional search by media type options: image, media
location array optional search for objects within a

geographical bounds
array should be formed
similar to {"lat":0, "lng": 0,
"radius": 5, "measure":
"km"}. Measure can be
kilometers (km) or miles
(ml); default is km. radius
can be decimal, default is
1. lat, lng should be down
to (?); lat,long must be
provided

custom array optional search for objects using
custom metadata fields

array passed should
contain each custom term,
followed by string of search
query. E.g.,
custom={"ethnicity":"french
", "status":"needs review"}

Example
/v1/search?term=my+dog&type=image

Returned

{

}

Submit media
TBD. Flesh out w/ Harlo better

Submit/Create New Record

01/17/2018 35/81

Path Method Description
/v1/derivative POST Create a new derivative record

when a media file is
submitted/accepted to repository

Parameters

Name Data Type Required/Optional Description Use
j3m json required decrypted j3m metadata

(as a JSON object) is used
to create a derivative
record of a submitted
media file

stringify json object before
passing

Example
/v1/derivative?j3m=stringJSONhere

Update Existing Record
Path Method Description
/v1/updateRecord/[derivative id
here]

PUT Update metadata fields for an
existing derivative record

Parameters

Name Data Type Required/Optional Description Use
id alphanumeric required unique id used to identify a

derivative record within the
InformaCam system's
database; the geocouch
document id

ID should be appended to
the URL as the final
locator in the path

description string optional add/update a description to
the record of a submitted
media file

this does not effect the
original J3M submitted,
only the derivative record
created for the admin view

alias string optional add/update a title to the
record of a submitted
media file

tier string optional add / update a tier of a
record of a submitted
media file

IBA specific

status string optional add / update a status of a
record of a submitted
media file to reflect that it
has been review/approved
by repository staff
members

IBA requested; also helps
meet ISO standard for
trusted digital repositories

custom json optional add custom field and
corresponding value to a
derivative record within the
InformaCam system's
database

pass stringified json array
in the following format, to
identify the key and value
to add: {'key here': 'value
here'}

Example
/v1/updateRecord/12345a2345?alias=this+is+a+new+title+for+this+record

01/17/2018 36/81

How InformaCam Works
The workflow is similar to that of ObscuraCam, but with a few key differences. Notice that on start-up, the app triggers the on-board sensors.
(Notifications in the top right corner clearly indicate the GPS and Bluetooth modules have been turned on.) This allows the app to register sensory and
atmospheric data throughout the session. These “bundles” of data contain the following:

 - Current timestamp
 - Device's identification
 - User's public (PGP) key
 - Image Regions created in the image/video
 - Current latitude & longitude
 - Current cell ID (if available)
 - Altitude
 - Compass bearing

Whether the user is taking a picture, or editing an existing piece of media, the app registers the goings-on, and signs each bundle of data with the
user’s public key. This mean that all actions taken on a piece of media (from capture to editing) are attributed to the user.

As with ObscuraCam, the user can perform image filtering and obfuscation on image regions. InformaCam also adds the “Identify” filter, which prompts
the user for the subject’s name (or pseudonym) and to fill in whether or not the subject has given his or her consent to be filmed. This checklist of
subject permissions can be further developed to match the needs of any organization to provide further protection to the people in front of the camera.
Notice again the sensor notifications: the context surrounding each edit to the image is recorded and will be inserted into the media as metadata once
the media is saved.

When the user saves the image or video, a dialog appears prompting her to choose one or more “trusted destinations.” This could be an organization,
a news outlet, or any friend whose PGP key is known to you. A copy of the unredacted, data-rich image will be created and encrypted to those parties.
At the same time, a redacted and data-stripped version is made available to share with anyone, anywhere.

The Informa Metadata Schematic
The metadata is organized in four categories: intent, consent, geneaology, and data. Here’s a rundown of what these categories mean.

Intent

This expresses information about the media’s creator, and the rules governing how this particular media object can be shared, and to whom.

Consent

This bucket of information regards the subjects contained in the image. Each subject is identified (by a name or pseudonym selected by the user) along
with their stated preferences regarding treatment of their likeness. For example, if Bobby insists that he wants his face to be fully redacted (rather than
blurred) this preference should be registered in metadata.

Genealogy

This information regards chain-of-custody, and represents how the media was acquired, and if a particular image or video is a duplicate of another.

Data

This category includes all standard metadata (timestamp, acquired sensory data, location and movement data) that have been collected during the
lifetime of the image, from the moment it was opened to the instant it was saved.

A sample metadata bundle for an image taken with InformaCam looks like this in JSON notation:

{
"data":{
"device":{
"bluetoothInformation":{
"selfOrNeighbor":-1,
"deviceBTAddress":"00:25:36:79:EC:6C",
"deviceBTName":"nexxxie"
},
"imei":"363289131048142"
},
"sourceType":101,
"imageRegions":[{
"regionDimensions":{
"height":256,
"width":256.00006103515625
},
"regionCoordinates":{
"left":527.705078125,
"top":196.15255737304688

01/17/2018 37/81

},
"obfuscationType":"Identify",
"location":{
"locationType":11,
"locationData":{
"gpsCoords":"[40.7085011,-73.9668647]",
"cellId":"36789325"
}
},
"captureTimestamp":{
"timestamp":1326216508313,
"timestampType":7
},
"subject":{
"consentGiven":"general_consent",
"informedConsentGiven":true,
"subjectName":"Harlo!"
},
"unredactedRegion":"I@4070cf30"
}
],
"imageHash":"f18e7510faaad0d942db68b5c75f219a",
},
"geneaology":{
"dateAcquired":0,
"localMediaPath":"\/mnt\/sdcard\/DCIM\/Camera\/1326216520426.jpg",
"dateCreated":1326216527629
},
"intent":{
"owner":{
"ownershipType":25,
"ownerKey":"MY-IDENTITY-IS-HERE"
},
"securityLevel":1,
"intendedDestination":"[\"harlo.holmes@gmail.com\"]"
}

01/17/2018 38/81

mailto:harlo.holmes@gmail.com

InformaCam Dashboard v2 Design
Based on the existing Unveillance v1 and the new Informa Annex engine, the new Dashboard v2 project creates a very simple user experience for the
InformaCam backend analysis, verification and visualization tools. The goal is to allow any file shared or exported from the InformaCam Android app to
be easily upload, unpacked, verified and visualized through a web user experience. The result is a permalinked report that can be easily shared
online.

Reference Points & Links
 - VirusTotal.com offers a user experience that pretty much does what we want: https://www.virustotal.com/en/

User Stories
"Activist Allie documents police brutality with her smartphone and was luckily using InformaCam when she did it. She immediately presses the share
feature, which posts the file first to InformCam site for verification & notarization, and then prompts her to post it somewhere else via an Android
'Share'. She uploads it to Twitter, and @ cc's a local newspaper, and journalists she follows. In the Tweet is a permalink to the InformaCam
verification&visualization page."

"Reporter Rick receives an email with photo it from an anonymous source, covering an important bit of breaking news. The source says it was taken
with InformaCam, and that it can be verified and visualized at the InformaCam site. Rick uploads the attachment from his iPhone, and see that the
photo verifies, and learns about the time, data, place and more"

"A human rights organization has supplied smartphones with InformaCam to document warcrimes in a war zone. There is only GSM/SMS coverage so
users can take video, and then share the hash id values via SMS to a designated contact number. Weeks later when the video files are sneakerneted
out of the area, they are uploaded to the InformaCam site, where the displayed and verified hash id values can be matched against the ones received
by SMS on the day of capture"

"Robin is a building contractor who gets in a dispute with a customer, and is taken to small claims court. Robin produces photos of the work that was
completed, taken with InformaCam and shared to the site, along with print outs and links of pages of the INformaCam site pages proving the photos
are real, along with the time, date and map. An expert witness from the InformaCam team is called in to explain how it works, and Robin wins the
case"

"Blogger Bo is covering a hurricane that has caused flooding in Long Island. Bo gets a bunch of photos showing sharks in swimming pools, that the
source says are true, because they were taken with InformaCam. Bo uploads them to the InformaCam site, which immediately shows that they do not
verify, and were tampered with. It also pulls up the original photos that had already been shared+verified by the original source who took them."

Requirements

Upload / Discovery

 - MUST allow user to upload their file directly from the InformaCam app (i.e. the "testbed" we have today)
 - MUST allow a user to upload any file via a web browser to see if it was generated by InformaCam
 - MUST allow upload from a mobile web browser (Chrome on Android, Safari on iOS, etc)
 - SHOULD allow searching via hash (pixelhash of media or j3m-based hash id) to see if item has already been uploaded
 - SHOULD support uploading photo to find existing/matching entries already uploaded

Verification

 - MUST show if media pixel hash matches hash/signature of metadata stored inside of it
 - MUST show if signed metadata verifies via openpgp signature
 - SHOULD search/download public key in known openpgp key repositories if key is not already in local store
 - SHOULD delete media once verification is complete

Visualization

 - MUST show time/date the media file was first ingested
 - MUST show clear indication of verification state
 - MUST show time/data the media file was captured
 - MUST show the pixelhash value and the j3m public ID value for manual/human verification
 - MUST show map (openstreetmap preferred) of all geolocation points stored in metadata
 - SHOULD show remaining metadata in an accurate, efficient, pleasing way, ideally server-side parsed and rendered

API / Data

 - MUST provide an easy way to download source J3M metadata as plaintext / json
 - MUST provide a clean permalink that can be easily shared
 - MUST provide a way for an app or other code to perform HTTP POST/PUT upload of media file for ingest

Drawings!

01/17/2018 39/81

https://www.virustotal.com/en/

InformaCamv2Flowchart.png

Technical Specifications
 - Implements in Python, Javascript, HTML, CSS (Any more Java left?)

Files
InformaCamv2Flowchart.png 29.3 KB 08/19/2014 n8fr8

01/17/2018 40/81

InformaCam Phone App documentation V2
Steps

Set Media Handling (be sure to change from Image Handling) Preferences
Open the settings:
 - From Main page/login page, select menu
 - Select Preferences
 - Select Image [change to Media] Handling
 - Select the radio button next to the option you would like for your Media Saving

The "Save Media Preferences"

 - Leave Original on SD card
 - As stated, this option will leave the original captured media on your Android's default storage location, and will make an InformaCam copy to
[where?]. It is important to note, that when you add paths, redact faces, etc. all changes will be recorded on the InformaCam copy of the video or
image, and the original unaltered media will still be available on your device.
 - Encrypt Original
 - This option will mean that your original will be stored, but it will always be encrypted and can only be unencrypted with the pgp key that you set
up at the time of installing InformaCam. This will be an unaltered-yet encrypted-version of the media.
 - Delete Original
 - As stated this option will delete the original, and you will there will only ever be the InformaCam copy of the recording/picture on your device.

Save video to InformaCam Media Manager

It is important to understand the save process when using InformaCam, as it effects how and what is stored, and any privacy concerns you might have
around this media.
When you record video with InformaCam, it is using your phone's camera. Therefore, this recorded video will be stored in the default Android storage,
in the standard Android device format, unaltered when you click 'Save' the save button. At the time that you complete recording a video and click
Save, the video will open inside of InformaCam. However, it is important to note, that while this video has opened inside of InformaCam this video has
not yet been 'saved' to InformaCam. At this point the video has not been protected or altered it has only been saved to the default Android storage.
Instead, you must also actively save the video to InformaCam before it will be effected by the Save Media Preferences you have set.
To save video to the InformaCam Media Manager, perform the following steps:
 - With the video open, click the Menu button.
 - In the menu that appears, click Save.

Open a media file

 - From InformaCam's main page, click Media Manager
 - From the list of media files that appear, tap once on the media piece you wish to open.

Rename a media file

 - From the InformaCam's main page, click Media Manager
 - From the list of media files that appear, press and hold the media file you wish to rename
 - in the Media Manager options menu that appears, select Rename
 - in the Rename dialog box that appears, enter the name you wish to give the file, and then press OK.

Delete a media file

 - From the InformaCam's main page, click Media Manager
 - From the list of media files that appear, press and hold the media file you wish to delete
 - in the Media Manager options menu that appears, select Delete

Export a media file

 - From the InformaCam's main page, click Media Manager
 - From the list of media files that appear, press and hold the media file you wish to export
 - in the Media Manager options menu that appears, select Export
 - from the list available applications that appear, select the application you wish to use to Export a media file (e.g., email, twitter, etc.), and use that
application's functionality to send the media file.

Note: If you have saved a piece of media, and it is not showing in InformaCam's Media Manager, you probably have saved the media, but have not
saved it to InformaCam. Informacam uses your normal video camera to record videos. You must take an extra step, and intentionally save it as an
InformaCam video in order for it to be managed by InformaCam.

Add a pixelation or redact Region to Media

 - Open a an Image or Video inside of InformaCam
 - Tap the screen, in the center of where you would like to add a pixel block
 - By default a pixelated block will appear on screen

01/17/2018 41/81

 - To change this to a Redact block, instead of a pixelated Block
 - If a video, first pause the video
 - Tap on the block you wish to alter
 - In the horizontal menu that appears in the lower part of the screen, select Set Redact
 - Save changes
 - Select the Main menu
 - from the menu that appears select Save
 - this will save your changes to the media within the InformaCam Media Manager

Note: this block will appear throughout a video at this location, unless you also set in and out points for it

Delete a Region

 - Open a an Image or Video inside of InformaCam
 - All existing Region layers will appear within the screen
 - *Note: * if a Region has different in/out than the start/stop of a video, then you will need to play the video until the Region you wish to delete
appears
 - Tap the Region you wish to delete
 - a horizontal menu you will appear in the lower part of the screen
 - Note: if the Block is a layer on a video file, you must first pause the video before
 - Select Remove Keyframe
 - Note: if a Block is also attached to a Path, removing the keyframe will only remove in/out that the block you have tapped is associated with

Add a Pixel or Redact Path

When adding a Path, in a sense you are making an animation out of a pixelation or redact Region. with the Region moving along a path you define.
You must first set a pixelation/react Region, and then create a path between the start (In point) and end (out point) of the path you would like for this
block to follow. Note: for a highly active choppy piece, you can will likely have to create multiple block animations to effectively obscure an object or
someone's face.
[finish this up]

Glossary/Terms
InformaCam:
InformaCam, part of the SecureSmartCam suite of mobile apps, is a tool that enables you to embed metadata (e.g, geolocation information, edits
made, etc.) into video or still images; encrypt your media while you store it on your mobile device; and securely send media to a trusted destination,
that is are capable of accepting, verifying and securely storing InformaCam media.
InformaCam is actually a combination of a number of applications:
 - InformaCam App: an Android phone app capable of generating images and video according to the InformaCam specification, and enables you to
submit that media to trusted destinations using a verifiable chain of custody;
 - InformaCam Browser: a web-based application that decrypts and decodes media generated by the phone app, that has been submitted by
yourself or by others. You can use the InformaCam Browser to view and annotate the media, and submit trusted messages to other users of the full
InformaCam system.
 - InformaCam Server: a back-end system capable of safely verifying, accepting and digitally archiving InformaCam media that has been submitted
by app users
InformaCam Security Measures
The following measures will help you with secure communications and media capture:
 - Login: you must login to access the InformaCam server system, as well as each time you enter the InformaCam phone app.
 - File cryptography: video and image files saved within InformaCam phone app can be encrypted. This is a Media Saving Preferences that you set
at installation, and can change at other times.
 - Metadata cryptography: The metadata added to media files (e.g, Regions, Annotations you choose to add, geolocation information, etc.), is also
encrypted. To decrypt these files requires 1) knowledge of the public PGP key created for you when you installed the InformaCam phone app (if you
device is associated with an InformaCam Server system this is key association is automatically done for you).
 - Device specific certificate: if you are using the InformaCam phone app in combination with an InformaCam server, your a certificate specific to
your device has been generated and installed, and is used by the receiving server to verify the identity and authenticity of your device at the time you
submit media (is this correct? Is a certificate generated for a mobile device? or just for a user wanting to ssh to trusted server??)

Annotation
A small descriptive chunk of text that be added to an InformaCam Region.

Region
A region is rectangle or square shaped layer, that is filled with pixelation or a black out, and is layered on top of a video or image within InformaCam in
order to obscure that portion of an image (e.g, can be used to hide someone's face).

Chain of Custody
If you are using the InformaCam phone app in combination with the InformaCam server, a certificate will be created for your device, and registered with
the server. This certificate will be used to verify the identify and authenticity of the device as it is transmitted. In addition, This

Device Signature
At that time the InformaCam app is installed on a mobile device, a device key is created using PGP technology, and signed by the user (the user
creates a password). This password-verifiable PGP key is the Device Signature used to identify an InformaCam mobile app. This signature enables a
Trusted Destination to authenticate the identity of device when media is submitted to its server for storage.

Keyframe

01/17/2018 42/81

This is a frame within a video file, that has been selected to be either the start (in point) or end (out point) of a InformaCam Trail.

Media Editor
The Media Editor is the primary InformaCam user activity space. Within the Media Editor a user can view a media file; gain access the tools to add an
InformaCam Region, Trail or Annotation to a media file; and save and submit a file to an InformaCam trusted destinations.

Media Manager
The InformaCam Media Manager lists all of the media that is currently saved locally to InformaCam. It identifies media type (image or video), and the
last time it was saved. Use the Media Manager to open, rename, delete, and export InformaCam files (exporting is not the same as submitting a file to
a trusted destination).

Encrypting Metadata
Any metadata that is generated for an InformaCam file is encrypted using PGP technologies. The phone app encrypts the metadata using the Device
Signature (that was generated at the time InformaCam App was installed on the device), which can then be decrypted by a Trusted Destination when a
user submits an InformaCam file. This

Metadata
In the context of the InformaCam system, metadata refers to the descriptive data that is added to an InformaCam video or image (e.g., geolocation
data), any annotations that a user has added, Regions that have been added, a log of the edits that have been made to a file since its original capture,
and so on. This metadata is stored as JSON object, and inserted into the structural metadata of a media file.

PGP
PGP (pretty good privacy) is a data encryption system that allows user to sign, encrypt and decrypt electronic communications and files. The
InformaCam system uses PGP in combination with other security technologies, as a part of sharing and authenticating files submitted from an
InformaCam app to an InformaCam Trusted Destination.

Submit
Submit is the action of sending an InformaCam file to a Trusted Destination, using an uninterrupted, verifiable chain of custody.

Trail
A trail is the path that a Region follows within a video to obscure a moving portion of video (e.g., someone's face as they walk). An InformaCam Trail
can be thought of as essentially a InformaCam-specialized computer animation.

Trusted Destination
Trusted Destination are contacts that you register in the phone app, that you have approved and whom you have shared your public PGP key (so are
able to read your encrypted media files). However, the combination of the InformaCam App and the InformaCam Server system enables InformaCam
create and record an uninterrupted chain of custody, so the media submitted is verifiable. To ensure the safety and chain of custody of your media,
choose an organization that you feel comfortable with as your trusted destination.

Tween
This is the process in which InformaCam generates the frames between the in and out points that have been set for a Regions Trail. Tweening a
Region in InformaCam is the same concept as tweening a computer-generated animation, in which multiple frames of the animation (in this case the
Region) are created between a start and an end point, in order to give the appearance of smooth motion.

Tutorials
The tutorials will be a JSON combination of steps and glossary terms created above:
Tutorial 1: Overview
 - InformaCam definition
 - InformaCam security measures
Tutorial 2: Setting up your app
 - The Save Media Preferences
 - Set Media Handling Preferences
 - Trusted Destinations
 - Setting Address Book
Tutorial 3: Saving, Sending and Exporting Media
 - Save Media to InformaCam Media Manager
 - Sending Media to Trusted Destination
Tutorial 4: Adding Annotations and Regions
 - Add a Pixelation or Redact Region to Media
 - Delete a Region
 - Add a Pixel or Redact Path
 - Add an annotation
 - Delete an annotation
Tutorial 5: Managing Media in the Media Manager
 - Open a Media File
 - Rename a Media File
 - Delete a Media File
 - Export a Media File

Tutorial6: Get Help (basic contact information? place for organization to put their contact info)

01/17/2018 43/81

InformaCam Server documentation V2
Terms
Genealogy
In the context of the InformaCam system, the Genealogy provides the time of creation of a piece of media on its submitting device, and the time of
submission of the media to a dedicated InformaCam digital repository.

Device Integrity
In the context of InformaCam system, the Device Integrity is how certain an InformaCam system can be that a piece of media was captured on a
'registered' device. The integrity is established by a system of verfications, and encryption technologies. [link to InformaCam overview from phone app
documentation].

*Submitted by
In the context of InformaCam system, Submitted By refers to the device (and its corresponding device signature) that was used to capture a piece of
media and to submit to a dedicated repository. It does not refer to a human user, who could be in possession of more than one device signature. This
device signature is established [link to device signature information from phone app documentation]
Submission Views
Each media submission can be viewed in multiple contexts.
 - Normal View

The Normal view provides overview information about the media:
 - Intent
 - Genealogy
 - Device Information
 - Device Integrity
 - Map View

The Map View identifies on a map the location (using latitude and longitude) a media piece was captured. This view also identifies the locations
(latitude and longitude) that any edits were completed on a media file while it was on the a submitter's InformaCam mobile device.
 - Motion View

TBD
 - Network View

TBD

Steps

Locate a Submission

 - Locate Media using Search
 - Click on Search, located in the top, right horizontal menu bar
 - Search by (link to different search options
 - Locate Media from Submissions listing
 - Click on Submissions, located in the top, right horizontal menu bar
 - From the list of Media that appears, click on the Filename of the submission you wish to View
 - You will be brought to that media piece's Normal View.

Rename Media Object
By default a media element is name "Image by [submitter public key]" or "Video by [submitter public key]. To rename a media object to a more intuitive
name:
 - Click Options drop-down menu, located in the top, left horizontal menu bar.
 - Select Rename file
 - In the dialog box that appears, enter the new name you wish to enter
 - Click OK

Export Video

TDB

Export Metadata As
TBD

View Messages
Messages that have been associated with a Media file (from the submitter and a reviewer), can be accessed and added here:
 - Click Options drop-down menu, located in the top, left horizontal menu bar.
 - Select View Messages
 - A dialog box will appear. Existing messages will be listed.

Send a Message

 - [SENT TO TBD]
 - Click Send
 - Click the X in the upper right hand corner to close

01/17/2018 44/81

Search by keyword

 - Enter Keyword in the Keyword field, located in the left-hand search column
 - If you are done applying search options, click Search.
 - If there are results that match your query, they will appear in the right-hand search column

Search by Time

 - To select, click on one of the timeframe options available to you in the left-hand search column
 - If you are done applying search options, click Search.
 - If there are results that match your query, they will appear in the right-hand search column

Search by Type

 - To select, click on one of the Type options available to you in the left-hand search column
 - If you are done applying search options, click Search.
 - If there are results that match your query, they will appear in the right-hand search column

Search by Location
 - TBD

Save a search
You can save combinations of search options that you have selected, so that you can reuse the same search at another time period.
 - Select the Time, Type, Location, or Keywords options you would like to apply to a Search
 - Click Search
 - If there are results that match your query, they will appear in the right-hand search column
 - Click on the Save Search button, located in the upper, right-hand corner of the results search column
 - Give the saved search a name
 - Click OK.

Load a Saved Search

 - [insert Locate Media Using Search]
 - Click Load
 - In the Save Searches dialog box that appears, double-click on the Save Search you wish to apply.
 - The Saved Search options will load in the left-hand search column.
 - Click Search.
 - If there are results that match your query, they will appear in the right-hand search column

Reset Search
To clear search options that have been previously applied
 - Click on the Reset button available at the top of the left-hand search column

ADMIN
Change Password
 -TBD
Change Language Preferences
 -TBD
Manage Clients

01/17/2018 45/81

InformaCam Trusted Destination (ICTD)
The ICTD file provides a means for an organization who wishes to receive InformaCam enhanced media, to create an easily distributed file that
includes all the necessary information to contact and submit media in a secure manner. It also includes the ability to define organization specific form
definitions using the Open Data Kit format.

ICTD files can be bundled in with InformaCam-based applications:
https://github.com/guardianproject/InformaApp/tree/master/app/assets/includedOrganizations

or they can be loaded at runtime through sending as an attachment, downloading from a secure website, or beaming via Bluetooth, among other
standard data transfer mechanisms.

Sample Structure
{"organizationName":"",
"repositories":
[{"asset_id":"","source":"","asset_root":""}],
"forms":[],
"publicKey":"",
"organizationFingerprint":"",
"organizationDetails":""}

 - forms are stored as a Base64 encoded version of an OpenDataKit form: http://opendatakit.org/
 - publicKey is the ASCII ARMOR output of an OpenPGP public key
 - organizationFingerprint is the short fingerprint of your public key

Actual InformCam TestBed ICTD File:
{"organizationName":"InformaCam Testbed","repositories":[{"asset_id":"0B07iVinFhZgqa2tTZXhQdXNXYlk",
"source":"google_drive","asset_root":"https:\/\/drive.google.com"},{"asset_id":"6c393ca6-2e7b-4bcb-9b7a-e28a0a9b93e7","source":"globaleaks","asse
_root":"http:\/\/jmsoty67uqopt3at.onion"}],"forms":["H4sIAClz6VEC\/51UsVLjMBCtna\/QqIErsJKjuX..."],
"publicKey":"H4sIAClz6VEC\/31Xxwr0Opbe+yn+5QzmtrNdHpiFcyr....",
"organizationFingerprint":"0E7804B31CCD9C1F179A32039CB5E4893246922E","organizationDetails":"Brooklyn, NY"}

01/17/2018 46/81

https://github.com/guardianproject/InformaApp/tree/master/app/assets/includedOrganizations
http://opendatakit.org/

JSON Mobile Media Metadata (J3M)
Relevant Links
 - WITNESS Blog Post "Is This For Real?": http://blog.witness.org/2013/01/how-informacam-improves-verification-of-mobile-media-files/

Useful Code
 - Javascript JQuery J3M Parser Sample: https://github.com/guardianproject/UnveillanceViewer/blob/master/web/js/j3mviewer.js
 - C library for embedding and reading J3M in JPEG files: https://github.com/harlo/Jpeg-Redaction-Library
 - Java code for parsing J3M data: https://github.com/harlo/j3mifier/

Sample J3M File
Below is annotated version of the JSON data in a typical J3M bundle. You can view more actual J3M data through our public testbed at https://j3m.info

This represents where the file was original stored on the InformaCam app's encrypted internal storage. This will be rarely used, but could be helpful in
extreme situations where inspection of the capture device is necessary:

{"asset_path": "submissions/45454ac1ade36ebec3749e8dc2aedc4b",

The Genealogy tag provides the basic data about the source of the media. "hashes" is an MD5 hash of all the pixel values of the image or video
frames. "createdOnDevice" is the OpenPGP public key fingerprint for the user/app. "dateCreated" is a timestamp value for when the media capture
occured.

"genealogy": {"localMediaPath": "/e61756a62a37535b77b0183318c79d26a2e0bdf0", "hashes": ["9230de4b067b2f14afcaa41d23b30a09"],
"j3m_version": "J3M version 1.0", "createdOnDevice": >"694db2c3ecc07ac07f63e323f7b9a0cefada94cf", "dateCreated": 1386690725995},

file_name is the name of the J3M file as stored in the phone's internal memory

"file_name": "kxerFDrNCHiNOxawWUgYEbknbC.j3m",

public_hash is a SHA-1 cryptographic hash that combines the user's public key fingerprint and the MD5 media hash from above. This is used as the
searchable public token identifier for the media file

"public_hash": "b840cbfd806865fff8cc34078540224cfe804ae5",

Intent represents the alias of the person who captured it, again their pgp key fingerprint, and who they meant to send this media file to, along with any
record of it actually being transmitted. The "intendedDestination" information comes from any installed "trusted destination" or ICTD configuration files,
that are stored in the app

"intent": {"alias": "ai whiteness", "ownershipType": 400, "pgpKeyFingerprint": "694db2c3ecc07ac07f63e323f7b9a0cefada94cf",
"intendedDestination": "InformaCam Testbed"},
"date_admitted": 1386726920279.5662, "_id": "86ae352e68328c06de7840f4cb6be809",

The "data" section is where the sensor metadata logs are stored. It is an array if timestamped, sensorCapture items

"data": {
"sensorCapture": [

This is an orientation event, containing azimuth, pitch and roll, both in raw formats and "corrected" based on the orientation the user is holding their
phone

{"timestamp": 1386690720753, "captureType": 271, "sensorPlayback": {"azimuthCorrected": -1.84727144241333, "pitchCorrected":
0.017154498025774956, "azimuth": 43.07861328125, "pitch": >-18.8385009765625, "roll": -132.7789306640625, "rollCorrected":
-0.12050031125545502}},

This is a light meter value

{"timestamp": 1386690734267, "captureType": 271, "sensorPlayback": {"lightMeterValue": 13}},

This is a combined event with light meter and pressure data, both raw, and adjusted based on the phone's indicated local elevation

{"timestamp": 1386690729261, "captureType": 271, "sensorPlayback": {"pressureHPAOrMBAR": 1007.3463134765625, "lightMeterValue": 10,

01/17/2018 47/81

http://blog.witness.org/2013/01/how-informacam-improves-verification-of-mobile-media-files/
https://github.com/guardianproject/UnveillanceViewer/blob/master/web/js/j3mviewer.js
https://github.com/harlo/Jpeg-Redaction-Library
https://github.com/harlo/j3mifier/
https://j3m.info

"pressureAltitude": 49.26783752441406}},

This is "visibleWifiNetworks" event capture displaying network names, frequency, strength and MAC address information

{"timestamp": 1386690729939, "captureType": 271, "sensorPlayback": {"visibleWifiNetworks": [{"bssid": "28:c6:8e:ba:ea:dc", "wifiFreq": 5220,
"wifiLevel": -93, "bt_hash": >"afbf1e7ffc07f6b4471e34f8470f5fde947a8f2b", "ssid": "cloudcity5ghz"}, {"bssid": "1c:af:f7:d8:db:61", "wifiFreq": 2462,
"wifiLevel": -88, "bt_hash": >"9c1cb7186bea393589ac3a591052f91da423205e", "ssid": "Cloud10"}, {"bssid": "28:c6:8e:ba:ea:da", "wifiFreq": 2437,
"wifiLevel": -61, "bt_hash": "7b3b34fe541048f0e0800f1b788dc44cfdf6a59d", >"ssid": "cloudcity"},...

This is a GPS location event, display latitude, longitude and current accuracy of the sensor, based on whether it is coming from satellite, wifi, cell
towers, etc.

{"timestamp": 1386690719706, "captureType": 271, "sensorPlayback": {"gps_coords": [-71.1253508, 42.3286856], "gps_accuracy": "32.119"}},

This is an accelerometer event, showing X,Y,Z motion data

{"timestamp": 1386690721758, "captureType": 271, "sensorPlayback": {"acc_z": 9.188077926635742, "acc_y": 2.7202823162078857, "acc_x":
-1.9511220455169678}},

This is a telephony event, showing both any bluetooth devices noticed in the area, and information about the cellular network tower the smartphone is
currently registered with. If the device is a wifi only device, or is not using a SIM card, this data will simply be omitted. The bluetooth device address
does NOT display the name of the actual device MAC address, but instead shows a one-way hash value. This was an attempt to preserve some
privacy for individuals who might be in the area. e

{"timestamp": 1386690719714, "captureType": 271, "sensorPlayback": {"bluetoothDeviceAddress":
"5d9d203488950ff20c07b6dbfe9a8b8ddabafc6c", "LAC": "36493", "MCC": "310260", >"bluetoothDeviceName": "Nexus 4", "cellTowerId":
"79211356"}},

After the sensor data, the J3M then shows basic "EXIF" style information from the capture device:

"exif": {"orientation": 0, "focalLength": -1, "timestamp": "2013:12:10 10:51:48", "make": "LGE", "flash": -1, "height": 960, "width": 1280, "iso": "100",
"location": [-71.1250228881836, >42.32872772216797], "duration": 0, "model": "Nexus 4", "exposure": "0.033", "whiteBalance": -1, "aperture":
"2.7"},

Finally, any user annotations, based on Open Data Kit forms provided as part of the "Trusted Destination" file, are shown here:

The form definition used is indicated, and a basic free text annotation is shown here:

"userAppendedData": [{"associatedForms": [{"path": "/forms/493dde68c49e6b99556186a3e776d705.xml", "namespace": "iWitness Free Text
Annotations", "id": "234d025ee64976d27e1d2305f80824bc", >"answerData": {"iW_free_text": "watch out for icy sidewalks and roads"}}],
"timestamp": 1386690794797, "id": "cdb7c22265121160dec5c0598263f58c"}, {"associatedForms": [{"path":
>"/forms/493dde68c49e6b99556186a3e776d705.xml", "namespace": "iWitness Free Text Annotations", "id":
"b63a2a65fc91dd9744d6cd5cea5cb28d", "answerData": {"iW_free_text": "this tree might >fall down"}},

If an annotation is placed at specific X,Y point in the image, or X,Y+time window for video, that information is also provided:

{"path": "/forms/46b9f8e70113ae0f39ae26338c0dc433.xml", "namespace": "iWitness v 1.0", "id": "fae0900eec13baefce4f98b895b80405",
"answerData": {"iW_individual_identifiers": "Victim"}}], "timestamp": 1386690798758, "regionBounds": {"top": 224, "displayLeft": 415, "height": 118,
"width": -37, "displayWidth": 115, >"startTime": -1, "displayTop": 224, "displayHeight": 118, "endTime": -1, "left": 263}, "id":
"1e9d35bed92b8fdfe46b251afb3227f2", "index": 0}, {"associatedForms": [{"path": >"/forms/493dde68c49e6b99556186a3e776d705.xml",
"namespace": "iWitness Free Text Annotations", "id": "b63a2a65fc91dd9744d6cd5cea5cb28d", "answerData": {"iW_free_text": "this tree might
>fall down"}}, {"path": "/forms/46b9f8e70113ae0f39ae26338c0dc433.xml", "namespace": "iWitness v 1.0", "id":
"fae0900eec13baefce4f98b895b80405", "answerData": {"iW_individual_identifiers": >"Victim"}}], "timestamp": 1386690798758, "regionBounds":
{"top": 224, "displayLeft": 415, "height": 118, "width": -37, "displayWidth": 115, "startTime": -1, "displayTop": 224, >"displayHeight": 118, "endTime":
-1, "left": 263}, "id": "1e9d35bed92b8fdfe46b251afb3227f2", "index": 0}]}}

Notes on logged values
The J3M data collected by the mobile client should be as un-interpreted as possible. The Unveillance package should be responsible for interpreting
and normalizing all data. Given that J3M data will be a bit "dirty" on input, please not the following when cleaning the data.

Impossible Values

To easily translate values from JSON into our database, certain values must not be null, or NaN, but must be given impossible values that still adhere
to the expected type. The following notes apply to specific values:

01/17/2018 48/81

 - Cell Tower ID, if unknown, will be recorded as -1.
 - Location data, if unknown, will be recorded as [0.0, 0.0]. This is technically a legitimate latitude and longitude, but should be regarded as NaN. Do
note that the Android client always reports position with up to 9-decimal place precision; should a client actually report from this location, the actual
reading would be similar to 0.000000134.

01/17/2018 49/81

Potential Approaches for InformaCam Server Secure API
Fedora Repository

Fedora Repository is a middleware application provides:

 - object oriented media storage management
 - REST/SOAP APIs
 - search utility
 - replication
 - disaster recovery utility
 - malleable storage options (database and file)
 - authorization via XACML standard

The XACML authorization is managed through Sun's Java classes that understand XACML. In summary, the XACML is an XML-based syntax, in
which you write access/authorization policies and a requests to resources governed by these policies. When a request is made, the Java libraries read
the request, refer to any written policies as the means to evaluate access rights to the requested resource. Sun's explanation can be found here:
http://sunxacml.sourceforge.net/guide.html

Fedora's use of XACML assumes that authorization schema will be combined with some form of identity management that is enterprise in focus (e.g.,
Shibboleth, LDAP); and its default policy is 'public'. [still need deeper research to determine how this is applied to the API requests]

Notes:
benefits: not operating dependent. allows cross-operability between systems
similar to SELinix but abstracts it beyond OS

Global Leaks

GLobal Leaks's project plan is moving its project towards a RESTful approach. However, from the documentation that is available, authorization does
not appear to have been tackled yet in its API development. In addition, from the documentation available Global Leaks does not appear to be focused
on creating a verifiable chain of custody, or encryption of requests/submissions. It would be worthwhile to have a conversation with Global Leaks
developers, to find commonalities. But at this time, it does appear to still be too early in its development to be of relevance to InformaCam at the
moment.

HMAC Roll-Our-Own

This would be similar to the Amazon Web services API approach.
1. requester combines all data into blob
2. Hash blob with private key know to server and client
3. send public key with blob + timestamp
4. receiver verifies time frame of request
5. look up public key to verify 'requestor' is registered
6. if both check out move forward with request
7. checksum blob with recreated blob using private key
8. if all good return requested data (and depending on level, requester then becomes receiver in a process for returned data)

Notes:
- need to flesh out the "Hash blob with private key know to server and client". Need to include an authorization key that is created and thrown out for
each request.
- too heavy for large scale system?

OAuth

This standard is quickly becoming "the" method for authorizing API requests. Seems really similar to rolling our own, but more specified. In addition,
the focus is on securing the signature/requestor, but the request parameters itself are left unencoded, so would need to add custom encryption to the
passed data on top of using this protocol [need to deeper research to determine if encrypted passed params are not also allowed]

- notes; OAuth can do the authentication. Data sent needs to be dealt with another way.
- Probably best way to manage API clients that we don't fully control
-

SE Linux

[research; how would SE Linux affect Fedora/other approaches?]
- could be used to create policies around specific applications
- e.g., set policy for how couchdb access is allowed on the complete os level
-

01/17/2018 50/81

http://sunxacml.sourceforge.net/guide.html

Supported Devices
While we aim to support all Android devices, there are some that work better than others, and version so the Android OS that are more secure or
feature-rich than others. This page provides the latest information regarding devices, OS versions and more.

Development Devices
The following devices are used as part of our active development process

 - Galaxy Nexus (Samsung)
 - Galaxy 4 (LG)
 - Samsung Galaxy Note II

Primary Test Devices
 - Galaxy Nexus (Google/Samsung)
 - Nexus 4 (Google/LG)
 - Nexus 5 (Google/LG)
 - Optimus L9 (LG)
 - Galaxy Camera (Samsung)
 - Galaxy Note II (Samsung)
 - Nexus 7 (Google/Asus) - first gen

Other Verified Devices
 - Galaxy Tab Player (Samsung)

Operating Systems
 - Android 2.3.6 (Gingerbread)
 - Android ICS (4.0/4.1)
 - Android JellyBean (4.2)

01/17/2018 51/81

Version 1 Documentation
APK Download Available
Please Note: This new binary is not backwards-compatible. You will have to uninstall InformaCam from your device before using this one.

Please download APK here
(older binaries)

or build from source
(notes for building from source are here: [[Build InformaCam from Source]]).
Also, your device must have the following apps for proper use. Please be sure to download, install, and properly set-up the following:
 - Orbot
 - Dropbox

The APK is prototype, and as such, will be updated and replaced from time-to-time. You will be notified to re-install when there is a new version
available. This also means that this build should not be considered for use outside of testing and demo-ing purposes, as the app will have to go
through a thorough peer-review and quality assurance testing before it can be reliably used "in the wild."

Device Support

InformaCam requires a devices running Android 2.3.3 or later.
So far, InformaCam has been successfully tested on the following devices:
 - Samsung Galaxy Nexus
 - Nexus 4
 - Samsung Galaxy Player
There are known issues on the following devices:
 - Samsung Galaxy S III
 - Nexus One

If you experience difficulty with InformaCam, and your device is not listed above, please contact us with your device model. We will investigate.

Other dependencies
To properly use the backend interface, you must navigate through it using the Tor Browser Bundle, in place of a standard browser like Firefox,
Chrome, or IE.
Update
You may now use Firefox or Chrome to access the backend. Has not been tested on IE.

Android Client (InformaCam): How-to
 - Set-up your App
 - Create an Image or Video
 - Use the Media Manager
 - Save, Send, and Export Media
 - Communicate with Trusted Destinations
 - Troubleshooting and Bug Reporting

Web App (iWitness): How-to
 - View Submissions
 - Create Annotations

Set-up your App
InformaCam has a handy wizard that guides you through set-up, step by step. When you're finished with the wizard, the first thing you'll want to do is
to get the proper credentials to send your media to a trusted destination server. From the main menu, tap "Export Device Key" and send it to the
administrator of the trusted destination server. (You may send this by email, bluetooth, dropbox, it's up to you.) When the administrator sends you
back your .ictd file, simply open it with InformaCam and it will be automatically imported into your Address Book.

01/17/2018 52/81

https://www.dropbox.com/s/hsoixg1kq44ggff/20130216_InformaCam_IBA_proto.apk
https://www.dropbox.com/sh/s0rt1t5j5bu2mqo/t209KtfWZL
https://github.com/guardianproject/InformaCam/tree/rc1
https://play.google.com/store/apps/details?id=org.torproject.android&hl=en
https://play.google.com/store/apps/details?id=com.dropbox.android
https://www.torproject.org/download/download-easy.html.en
https://dev.guardianproject.info/projects/informacam/wiki/Version_1#Set-up-your-App
https://dev.guardianproject.info/projects/informacam/wiki/Version_1#Create-an-Image-or-Video
https://dev.guardianproject.info/projects/informacam/wiki/Version_1#Use-the-Media-Manager
https://dev.guardianproject.info/projects/informacam/wiki/Version_1#Save-Send-and-Export-Media
https://dev.guardianproject.info/projects/informacam/wiki/Version_1#Communicate-with-Trusted-Destinations
https://dev.guardianproject.info/projects/informacam/wiki/Version_1#Troubleshooting-and-Bug-Reporting
https://dev.guardianproject.info/projects/informacam/wiki/Version_1#View-Submissions-Online
https://dev.guardianproject.info/projects/informacam/wiki/Version_1#Create-Annotations

01/17/2018 53/81

Create an Image or Video
From the main menu, select either Camera or Camcorder to launch the camera. Once you're done taking your image or video, click "Save" (or the
check icon, depending on your device.) After a moment, an editor should appear where you can tap on a region in the video or photo to make
annotations. If you don't want to annotate your media immediately, press the menu button and select "Save;" your image or video will be saved in its
current state and can be re-opened at any time via the Media Manager.

01/17/2018 54/81

Use the Media Manager
From the Media Manager, you will see a list of all your InformaCam media, including the time last saved, and media type (image or video). Tap on any
item to resume editing, or long-press to rename the file, delete the file, or export it via email, bluetooth, or any other app you have on your device.

01/17/2018 55/81

Save, Send, and Export Media
There is a difference between the "Save" option, the "Save and Send" option (both found in the media editor) and the "Export" option (found in the
Media Manager) which must be understood to use InformaCam effectively. A media file's chain of custody depends on the option you choose:

 - Save means "save locally to my device so I may annotate the media later." InformaCam keeps track of when you edit and annotate your media,
and the record of all your edits are logged permanently and may not be deleted (unless you delete the entire media file, which cannot be undone).

 - Save and Send means "initiate the chain of custody between my device and a trusted destination chosen from my Address Book." When you
send a media file from the "Save and Send" option, you and your recipient can be certain that there is an uninterrupted chain of custody between the
media encrypted on your device to the media on the recipient's server.

 - Export means "create a copy of my original media and metadata that anyone I choose can view." InformaCam will create a copy of your original
media with unencrypted metadata that you may share with anyone via email, bluetooth, Dropbox, or any other way you'd like. (Metadata is
unencrypted at this point in time, but subsequent releases of the app will permit you to choose someone from your Address Book to encrypt your media
to.) Please note, export does mean that, once the exported file is created, InformaCam can no longer track the exported copy's chain of custody.

01/17/2018 56/81

Communicate with Trusted Destinations
Once a media file has been received, you will receive confirmation in your Message Center. You may think of this as somewhat of a chat room
between a trusted destination and yourself, where the topic of conversation is the media file you sent out. InformaCam will refresh your messages as

01/17/2018 57/81

long as you are connected to the internet, and are running Orbot (Tor) in the background.

Troubleshooting and Bug Reporting
If you receive an error message, or if the app quits unexpectedly, please relaunch the app (if possible) and select "Send Log..." from the main menu. A
dialog will appear that you must "OK" to generate the log. Once completed, you will be prompted to choose how you'll share the log with us. While
email is acceptable, we would prefer you use Dropbox to place your error log into the "InformaCam Error Reporting" folder. (As a beta tester, you
should have been granted access to this Dropbox folder; if not, please email harlo@guardianproject.info for access.)

The sooner you do this after an error, the better, as it will help the InformaCam team better tailor your experience.

01/17/2018 58/81

mailto:harlo@guardianproject.info

View Submissions Online
Once logged into the InformaCam server, you can view submissions by clicking on the Submissions tab (1). A list showing all submissions should
appear (2); clicking on one will load the image (3).

01/17/2018 59/81

One of the first visualization features available is the Map view, which gives a complete location history of the media object. InformaCam logs and
displays the location where the media was saved, any locations encountered while the user was editing (or annotating) the media, as well as any
locations visited during media capture (in the case of video).

Clicking on the Search tab (1) brings you to the place where you can search your collections according to various parameters. Each member on your
team can create custom searches that can be loaded and performed right from the search tab (2). Naturally, a user can save a search query if a
search is successful (3, 4).

Create Annotations

01/17/2018 60/81

Regions of interest (annotations) submitted by the user are highlighted in grey over the media itself. Clicking on any region (1) will bring up the
annotations box. Think of the annotations as a chat room dedicated to a particular region of interest. In addition to the original annotations by the
source, you and anyone on your team can add annotations to further the discussion to the most minute detail (2, 3).

Videos work the same way; as the video plays, the regions will follow their trail (1). These regions can also be updated in the same manner (2).

Files
06.png 1.06 MB 09/20/2012 harlo
03.png 61.3 KB 09/20/2012 harlo

01/17/2018 61/81

02.png 54.9 KB 09/20/2012 harlo
06.jpg 78.3 KB 09/20/2012 harlo
05.jpg 68.4 KB 09/20/2012 harlo
04.jpg 83.9 KB 09/20/2012 harlo
03.jpg 55.8 KB 09/20/2012 harlo
02.jpg 61.8 KB 09/20/2012 harlo
01.jpg 61.8 KB 09/20/2012 harlo
13.jpg 60.5 KB 09/20/2012 harlo
12.jpg 59.4 KB 09/20/2012 harlo
11.jpg 56.5 KB 09/20/2012 harlo
10.jpg 63.8 KB 09/20/2012 harlo
09.jpg 58.7 KB 09/20/2012 harlo
08.jpg 58.2 KB 09/20/2012 harlo
07.jpg 45.4 KB 09/20/2012 harlo
17.jpg 66.9 KB 09/20/2012 harlo
16.jpg 64.2 KB 09/20/2012 harlo
15.jpg 74.7 KB 09/20/2012 harlo
14.jpg 57.1 KB 09/20/2012 harlo
_05.png 65.2 KB 09/25/2012 harlo
_04.png 230 KB 09/25/2012 harlo
_03.png 131 KB 09/25/2012 harlo
_02.png 248 KB 09/25/2012 harlo
_01.png 133 KB 09/25/2012 harlo
getkey_4.jpg 16.1 KB 02/16/2013 harlo
getkey_3.jpg 15.1 KB 02/16/2013 harlo
getkey_2.jpg 22 KB 02/16/2013 harlo
getkey_1.jpg 17.7 KB 02/16/2013 harlo

01/17/2018 62/81

Build InformaCam from Source
Building Informacam from source requires the following project dependencies:
- IOCipher (https://github.com/guardianproject/IOCipher)
- android-ffmpeg-java (https://github.com/guardianproject/android-ffmpeg-java)
A. Build android-ffmpeg-java project
 1. Pull this project from git
 2. Build the project (follow the project's README)

 1. Note:
 2. The README instructs you to export the NDK. You might also need to export the path to get this to work. Run the following inside of the
external/android-ffmpeg directory, before building:

export NDK=/path/to/ndk/installation
export PATH=$NDK:$PATH

 1. Turn this project into a library, if it is not already
 1. (To do this in Eclipse, go to [project] > Properties > Android and check Is Library)
 2. The library jar that will be created, will be located at: [project]/bin/android-ffmpeg-java.jar

B. Build IOCipher 1. Pull this project from git
 2. Build project (follow the project's README)

 1. Note:
 2. The "make -C external" and "ndk-build" commands will not work if you have not set the path to the NDK inside of the iocipher root directory.
Run the following inside of the iocipher root directory, before building:

export NDK=/path/to/ndk/installation
export PATH=$NDK:$PATH

 1. Turn this project into a library, if it is not already
 1. To do this in Eclipse, go to [project] > Properties > Android and check Is Library
 2. The library jar that will be created, will be located at: [project]/bin/iocipher.jar
C. Link ODKParser Library
 1. Pull this project from git
 2. Turn this project into a library, if it is not already
 1. To do this in Eclipse, go to [project] > Properties > Android and check Is Library
 2. The library jar that will be created, will be located at: [project]/bin/odkparser.jar
D. Install InformaCam
 1. Pull the project from git
 2. Link the android-ffmpeg-java and iocipher libraries

 1. Open the Project > Properties > Java Build Path
 2. You should see these libraries' jar files with broken links; edit these to point to the library jars noted in the above projects
 3. then open the Project > Properties > Android
 4. Make sure Is Library is not checked
 5. Under Reference on this page, make sure the IOCipher and Android-ffmpeg-java libraries are listed/added

E. Check that the target APIs for ffmpeg and InformaCam match
You should use the API level set for the InformaCam project set target as the default 1. For each project check:

 1. Project > Properties > Android
 2. make sure the checked API level matches

F. Make sure you have enough memory
The default Eclipse memory may not be large enough and could cause heap problems. You will need to increase the size of the allocated memory
until heap issue disappear. 1. Open the eclipse.ini file

 1. on a Mac
 1. control + click on the Eclipse application
 2. Select Show Package contents
 3. In Contents > MacOS you will find eclipse.ini

 1. on Ubuntu
 1. this file should be located in: /usr/lib/eclipse/eclipse.ini
 2. Change the following to be allocated to somewhere between 1024 and 2048:

 1. launcher.XXMaxPermSize
 2. -Xms
 3. -Xmx

So the final code should look something like this:

--launcher.XXMaxPermSize
2048m
--launcher.defaultAction
openFile

01/17/2018 63/81

https://github.com/guardianproject/IOCipher
https://github.com/guardianproject/android-ffmpeg-java

-vmargs
-Xms2048m
-Xmx2048m

5. Push to phone
Because of specific hardware requirements, it is likely that an AVD will not be appropriate for debugging and development testing. It is suggested that
you instead push to a Android device.

01/17/2018 64/81

Stack
The InformaCam stack consists of several modules, outlined thusly:
 1. The [[Media Editor]]: a client-side activity that can make user-directed modifications to the media source, such as obfuscating or identifying
regions within the source.
 2. The [[Sensor Service]]: a background activity linked to the client that collects the various data that ultimately will be embedded into the media
object's metadata
 3. The [[Encryption Service]]: a module that formats collected metadata according to the Informa Specification, and handles its encryption to the
user and the user's trusted endpoints
 4. The [[Transmission Service]]: a module that securely transmits an encrypted media object to its trusted endpoints so that it may be decrypted,
viewed, and audited once it reaches its destination
 5. The [[Decryption Service]]: a module capable of decrypting received media, parsing it according to the Informa Specification, and keeping record
of the user who sent it.
 6. The Administration Service: an interface for trusted endpoints to regulate what type of media can be received and by whom. This interface should
also allow for trusted endpoints to create and modify templates for extended metadata fields on each user's client application.

01/17/2018 65/81

https://dev.guardianproject.info/projects/informacam/wiki/System

Administration System
Overview
The adminsitration server must handle the following interactions:
 1. A user attempts to [[upload media]] to the trusted destination's server via Tor-wrapped HTTPS. The server must log this request in its secure
database, and respond with an authentication token which must be attached to the user's upload.
 2. A user, having received its upload token, uploads media to the trusted destination's server over Tor-wrapped HTTPS. The server must monitor
the upload, and be sure the received data matches the expected checksum reported in step 1, as well as notify the user once the upload has
completed.
 3. The trusted administrator would like to view the submissions to the server over the past few days. By logging-in to the server, this password is
used to decrypt (via PGP) any media contained on the server.
 4. The administrator would like to contact a user directly to get more information about media received. The server should be able to connect to the
original user to send an encrypted message.

Specifications
Each trusted destination should maintain a server that can handle secure uploading, viewing, and administration of media. This server should:
 - Be Tor-enabled, so as to run Hidden Services (this allows the server to hide its IP address, or appear "offline" and still receive/transmit data to
other users)
 - Have a lightweight web server to grant permission for uploading files and register users to the app
 - Be able to accept https uploading (securely, also via Tor Hidden Services)
 - Have the MATLAB Runtime Environment installed to perform image verification tests
 - Utilize a JSP-based web interface to view, decrypt and audit media using our custom Java-based libraries.
A server should have the following software installed:
 - Tor
 - CouchDB
 - LightTPD (lightweight, secure webserver)
 - PHP-5 (with cURL and GD)
 - Maven 3
 - Jetty
 - FFMPEG
 - Truecrypt
 - MATLAB Runtime Environment
 - Java (depending of server's build/OS, Sun's distro of Java 6 or Oracle's Java 7 -- Jetty/Maven will not run properly using the OpenJDK)
 - Git (for pulling recent builds of supported codebases)
 - GPG (which should already be installed by default)
A server should also have the following codebases installed
 - SagCouch (a CouchDB library for PHP)
 - python-daemon (for daemonizing custom python scripts)

Instructions for installing/building these applications can be found here.

Security
Special attention should be paid to the security of each of these modules. IPTables should be updated to drop connections from any known malicious
IP addresses. Furthermore, certain modules, i.e. those accessible via hidden services, should only accept connections from Tor traffic, meaning all
non-tor traffic should be dropped.

01/17/2018 66/81

https://dev.guardianproject.info/projects/informacam/wiki/Building-Installing-System-Dependencies

Server Architecture v2
Overview
The Administration Server should support the following functions:
 1. Verified Upload of media, form data, and various other electronic files.
 2. Secure, encrypted bit storage of verified files.
 3. Encrypt/decrypt of messages and uploads
 4. Derivative creation of uploaded media and metadata
 5. User interaction support for accessing uploads and the derivatives of uploads (e.g., add annotations, reports, watch video, full text search, etc.)
 6. Controlled access to derivatives and original files
 7. User/Device identity management
 8. Messaging between server and registered devices

These functions should be modularized. Interaction between the modules should be REST based, to allow optimal flexibility and reuse of modules
within different contexts. See API documentation for details on the REST calls.

The REST back-end will be python-based, with a Tornado web server/application, and a couchDB (?) database. There will be a hidden TOR service
for file upload.

Use Case Details

Verified Upload of media, form data, and various other electronic files: Verification Module

 - A registered user device submits an upload request, with corresponding metadata blob to the trusted destination's server via Tor-wrapped
HTTPS; via a REST call (?).
 - Server verifies requesting device has corresponding, valid SSL certificate registered with server
 - If so, server logs request in its secure database, and generates authentication token based on timestamp and the submitted metadata blob and
returns token to requesting user device
 - Registered user device then submits upload file, with the authentication token, via To-wrapped HTTPS; via a REST call(?).
 - If authentication token and device certificate check out, the server then generates submission record

This module could accept various media types and files (i.e., would not have to be overly tied to the J3M as the metadata used for authentication), so
this module could be re-purposed within any system needing a verifiable chain of custody. For example, this system could accept form data (separate
from a media file), or an epub file that contained multiple media files, html/xml docs etc.

Notes:
The current setup directly uses J3M as part of the decryption. When you pass media, J3m is passed in encrypted blob. 1st thing it does it determine file
type and look for J3M. It then decrypts the J3M.

Already currently starts a file based on keywords. This is before goes into database. Don't necessarily need entire J3m object stored. More suitable for
J3m parts to be stored in flat files.

Submission record is created after going through J3Mifier

Secure, encrypted bit storage of verified files: Secure File Storage Module

 - This module will check for new submissions on a regularly defined interval/or Verification Module will call this module at time submission record is
created
 - When new submission is found, module requests submission blob, via a REST call (?)
 - Module will then submit file to storage "vault", and record location in submission record
 - Module will provide REST call to download original submission from "vault" upon request
 - TBD: Module will perform regular checksum/bit corrosion checks
 - TBD: Module will perform file format obsolescence watch

Encrypt/decrypt of messages and uploads: Encryption Module

 - server will decrypt object encrypted with passed pgp keys. Function reached via REST call
 - server will encrypt objects with passed pgp key. Function reached via REST call

Derivative creation of uploaded media and metadata: Derivatives module

 - this module will check for new submissions/or Verification Module will call this module at time submission record is created
 - Modules request submission blob via REST call
 - calls to Encryption Module to decrypt blob
 - If submission contains images/video, generates media file derivatives
 - breaks submitted metadata into appropriate derivatives context

User interaction support for accessing uploads and the derivatives of uploads: User Interface Module

01/17/2018 67/81

 - this module will enable user interaction, through a web interface, to the derivatives and submissions, via REST calls
 - the approach will be to provide a template-like responsive, web interface that supports necessary the use of the submitted files, media, and REST
calls that can be repurposed. For example
 - * Full text search
 - * display of regions within a video or image
 - * Saved searches
 - * Geo search
 - * Add annotations
 - * Reports (e.g., new submissions, by submission status,
 - * data feeds

This will use Sammy to create a state-like app. It will use custom js to achieve pixel specific (non-responsive) placement of image and video regions.
And it will support REST calls that break down user interactions to smaller data object transfers to the nonSQL db; as well as support access outside
of the template provided.

Use of back-end based templating/ties to a back-end technology (e.g., python, CometD, etc.), will be avoided. This framework should be highly
adaptable and be able to repurposed in a variety of formats.

Controlled access to derivatives and original files
See also Security below.

Notes

 - how to improve anonymous key exchange
 - how to push messages to phone from server
 - chat secure has potentially nice approach for client/cloud messaging interaction

 - what is core; vs institution specific functionality*

Messaging between server and registered devices
(Outside of REST responses, should we be tying this to something that could work with OSTel in some form??)

Security
For round one, security for the REST calls will rely on SSL certificates. The trusted destination will act as a certificate authority, and will grant
"requesting" devices/systems a organization matching certificate. A requestor (device, system or browser) must have a corresponding browser
certificate or server certificate for the REST call to be accepted.

In addition, a light-weight user login system will be developed with Python, to support user identification, for user interactions that are occurring. This
should remain lightweight at the moment, and be easily replaced with institutional authentication systems if needed.

There is also an assumption that the trusted destination server will be hosted on an internal network, for this iteration of development. Special attention
should be paid to the security of each of these modules. IPTables should be updated to drop connections from any known malicious IP addresses.
Furthermore, certain modules, i.e. those accessible via hidden services, should only accept connections from Tor traffic, meaning all non-tor traffic
should be dropped.

CouchDB views could also have individual admins, that are view and privilege specific.

Future iterations will consider and implement additional approaches to authentication and authorizations as needed, such as implementing OAuth for a
public API, SE Linux for tightly controlled permissions between modules.

H2. Design Assumptions

01/17/2018 68/81

STRIDE Threat Model Document
Please have a look at our STRIDE Threat Model Document, created for our Phase I Report, June 18, 2012

Files
InformaCam_ThreatModel_20120618.pdf 274 KB 08/30/2012 harlo

01/17/2018 69/81

TRAC Internal Review - January 2013
A fairly consistent set of standards have emerged in from the digital repository and archives fields, establishing best practices for a "trusted" digital
repository. These standards are used to audit a digital repository and/or give it a seal of approval; deeming it a repository in which the integrity and
authenticity of the digital files within can be trusted. As the InformaCam system moves from a research prototype, into a next phase of development, it
is useful to evaluate the InformaCam system against these practices (serving somewhat as a first step of an internal audit), as a means of identifying
strengths, weaknesses, and areas for further development of the server side of the InformaCam system.

It should be noted, that the concept of "trusted" that is applied in these standards has many overlaps with the risks and assessments that must also be
considered within the digital security field that InformaCam more aptly belongs, but they are not equivalent. In certain areas, InformaCam's
interpretation of the guidelines and practices will likely be far more exacting than other institutions have implemented and will need alternative auditing
criteria. It should also be noted that InformaCam System is still only a research implementation, so many of the standards are not applicable in the
immediate. Instead this audit serves more as means to define future guideposts of development.

TRAC, a set of criteria and a checklist that have become the ISO 16363 standard, was chosen as the standard to evaluate InformaCam in this
document, because of its broader applicability, and the possibility of an applicable external audit.

Jump to [[TRAC_Internal_Review_-_January_2013#Final Conclusions|Final Conclusions]] at the end of this document to read the findings of this
internal audit.

Background
There are a few initiatives/practices currently in place:
 - ISO 16363:2012 Space data and information transfer systems -- Audit and certification of trustworthy digital repositories

 This standard is a formal standardization of a cross-discipline, cross-institutional effort to define the characteristics of a trustworthy digital
repository, that is referred to as TRAC (Trustworthy Repositories Audit and Certification)
 - Data Seal of Approval

 This is a set of 16 guidelines, created by Data Archiving and Networked Services, used to establish trusted data management of scientific
research, and is overseen by an international board. A seal is awarded to a digital repository after a board review and approval of the 16 point
assessment.
 - DRAMBORA

 This is a toolkit, put together by the U.K.'s Digital Curation Centre and DigitalPreservationEurope (DPE), as a way to conduct an internal
self-audit of the integrity of a digital repository.

These practices/initiatives consider OAIS, developed by NASA, as the starting framework for the design and implementation of a digital repository (i.e.,
the organization of people, as well as the software applications used to support storage practices, and the terminology that is applied). However, the
initiatives/standards listed above attempt to go beyond abstraction, and define actual practices that should be in place to be a "trusted" digital
repository. There are a number of research-based digital repositories that implement these practices.

TRAC Overview

Trac defines a trusted digital repository as:

'a trusted, “long-term digital repository is a complex and interrelated system” (nestor 2006). However, more than just the “digital preservation system”
drives the management of the digital materials. In determining trustworthiness, one must look at the entire system in which the digital information is
managed...A trusted digital repository will understand threats to and risks within its systems...these potential threats include media failure, hardware
failure, software failure, communication errors, failure of network services, media and hardware obsolescence, software obsolescence, operator error,
natural disaster, external attack, internal attack, economic failure, and organizational failure"
The standards for certification of trusted digital repositories are broken into the following areas:
 - Organizational Infrastructure

 This portion of the criteria covers things such as financial stability, liabilities and legalities, ownership and governance of the digital repository
system, staffing, and so on.
 - Digital Object Management

 This portion of the criteria is more about defining the user interactions and workflows and data architecture, such as how and when a file is
accepted into the system, what are the metadata requirements around that, how access is maintained, and who may have access.
 - Technologies, Technical Infrastructure and Security

 This section identifies criteria for technologies determined to be acceptable for trusted digital repositories, and the security standards that should
be in place.

Reference:

 - OAIS
 - http://public.ccsds.org/publications/archive/650x0b1.pdf
 - OCLC Audit Checklist
 - http://cdm267701.cdmhost.com/cdm/singleitem/collection/p267701coll33/id/408/rec/5
 - ISO 16363
 - http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=56510
 - Drambora Initiative
 - http://www.repositoryaudit.eu/
 - Data Seal of Approval
 - http://www.icpsr.umich.edu/icpsrweb/content/datamanagement/preservation/trust.html
 - Trustworthy Repositories Audit and Certification: Criteria and checklist
 - http://www.crl.edu/sites/default/files/attachments/pages/trac_0.pdf

01/17/2018 70/81

http://public.ccsds.org/publications/archive/650x0b1.pdf
http://cdm267701.cdmhost.com/cdm/singleitem/collection/p267701coll33/id/408/rec/5
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=56510
http://www.repositoryaudit.eu/
http://www.icpsr.umich.edu/icpsrweb/content/datamanagement/preservation/trust.html
http://www.crl.edu/sites/default/files/attachments/pages/trac_0.pdf

Organizational Infrastructure
Criteria Met? Current Application Proposed Next Steps Next Phase Priority

A1.1. Repository has a
mission statement that
reflects a commitment to
the long-term
retention of, management
of, and access to digital
information.

? In statement of work? Guardian Project should
require each client to
define mission before an
installation if the guardian
maintains some level of
responsibility

Medium

A1.2. Repository has an
appropriate, formal
succession plan,
contingency plans, and/or
escrow arrangements in
place in case the repository
ceases to operate or the
governing or funding
institution

No Not met Option 1. Push
responsibility onto
Witness; Option 2. Roll into
"social business plan"

Urgent

A2.1. Repository has
identified and established
the duties that it needs to
perform and has appointed
staff with adequate skills
and experience to fulfill
these duties.

No The focus (appropriately)
has been on development
of the software, not on
servicing it

A definition of the service,
and then a clearly defined
breakdown of
responsibilities between
organizations needs to be
defined

High

A2.2. Repository has the
appropriate number of
staff to support all functions
and services.

No See A2.1 See A2.1 Medium

A2.3. Repository has an
active professional
development program in
place that provides staff
with skills and expertise
development
opportunities.

Yes Guardian Project develops
with as-needed-consultant
basis. Skills are pulled from
various areas.

current guardian
developers are making
themselves familiar with
the code base

Low

A3.1. Repository has
defined its designated
community(ies) and
associated knowledge
base(s) and has publicly
accessible definitions and
policies in place to dictate
how its preservation
service requirements will
be met.

Partially Tutorials, and
How-to-steps have been
written for software.
Preservation specific
knowledgebase has not
been completed

Finish documentation to
include preservation
definitions

Low

A3.2. Repository has
procedures and policies in
place, and mechanisms for
their review, update, and
development as the
repository grows and as
technology and community
practice evolve.

Not met Not met Make part of SLA
development, include
development of technology
maintenance

Low

A3.3. Repository maintains
written policies that specify
the nature of any legal
permissions required to
preserve digital content
over time, and repository
can demonstrate that these
permissions have been
acquired when needed.

No Not met Create a terms of
agreement for users
installing InformaCam
system before they can use

High

A3.4. Repository is
committed to formal,
periodic review and
assessment to ensure
responsiveness to
technological
developments and evolving
requirements.

Yes Steps to conduct internal
audit; discussions and
acknowledgement of need
for external audit; phase
reviews; direct contact with
users with requirements
gathering being conducted
at beginning of next phase

Medium

A3.5. Repository has
policies and procedures to
ensure that feedback from

01/17/2018 71/81

Met See A3.4 See A3.4 Medium

producers and users is
sought and addressed
over time.
A3.6. Repository has a
documented history of the
changes to its operations,
procedures, software, and
hardware that, where
appropriate, is linked to
relevant preservation
strategies and describes
potential effects on
preserving digital content.

No Not met Make part of SLA
development

Medium

A3.7. Repository commits
to transparency and
accountability in all actions
supporting the operation
and management of the
repository, especially those
that affect the preservation
of digital content over time.

Partial As open source project,
and as a grant reporting
project, transparency has
been maintained

These need to be formally
documented in relation to
repository practices

low

A3.8 Repository commits to
defining, collecting,
tracking, and providing, on
demand, its information
integrity measurements.

No Not met Need to better define how
the system will long actor +
actions taken on the
storage application; define
how the system will
routinely conduct checksum
and bit corrosion checks;
define better how the
server side will maintain
user identity to all actions

High

A3.9 Repository commits to
a regular schedule of
self-assessment and
certification and, if
certified, commits to
notifying certifying bodies
of operational changes
that will change or nullify its
certification status.

Not met With the project in research
stage this is not currently a
priority. Initial steps are
being taken now

Low

A4.1. Repository has
short- and long-term
business planning
processes in place to
sustain the repository over
time.

No Not met Discussions have begun.;
but clear funding needs,
goals and action plans are
not yet established

Urgent

A4.2. Repository has in
place processes to review
and adjust business plans
at least annually.

No Not met Make part of SLA
development work

Low

A4.3. Repository’s
financial practices and
procedures are
transparent, compliant with
relevant accounting
standards and practices,
and audited by third parties
in accordance with
territorial legal
requirements.

Yes All funding requirements
are being met with the
funding agencies.

N/A Met

A4.4. Repository has
ongoing commitment to
analyze and report on risk,
benefit, investment, and
expenditure (including
assets, licenses, and
liabilities).

Met See A4.3 See A4.3

A4.5. Repository commits
to monitoring for and
bridging gaps in funding.

Not Met While meeting
requirements and software
development has been
met, the funding to provide
the service of a repository
has not yet been fully
evaluated and covered

Make part of the SLA
development; seek
additional funders and
partners (e.g., E.U., U.N.,
continue with IBA, etc.), or
pay-for-service model
instead of grant funding

Urgent

A5.1 If repository

01/17/2018 72/81

No Not met Make part of SLA Urgent

manages, preserves,
and/or provides access to
digital materials on behalf
of another organization, it
has and maintains
appropriate contracts or
deposit agreements.

Development

A5.2 Repository contracts
or deposit agreements
must specify and transfer
all necessary preservation
rights, and those rights
transferred must be
documented.

No Not met Make part of SLA
development

Urgent

A5.3 Repository has
specified all appropriate
aspects of acquisition,
maintenance, access, and
withdrawal in written
agreements with
depositors and other
relevant parties.

No Not met Make part of SLA
development; delineate
responsible parties

Medium

A5.4 Repository tracks and
manages intellectual
property rights and
restrictions on use of
repository content as
required by deposit
agreement, contract, or
license.

No Not met Make part of SLA
development; add
appropriate data
requirements to metadata
schema; delineate
responsible parties

High

A5.5 If repository ingests
digital content with unclear
ownership/rights, policies
are in place to address
liability and challenges to
those rights.

No Not met See A5.4 High

Organizational Infrastructure Conclusions

While some of the criteria in this section will not directly influence this next phase of software development, there are some items that have an urgency
to them. At this time, InformaCam resides in a nebulous space, in which the Guardian Project develops and maintains a research implementation that
clients may access to review the stage and usability of the product. However, as a "trusted" digital repository, it becomes important to clearly
delineate the responsibilities that the Guardian Project is taking on, the legalities of ownership of media submitted to system, and the funding
sources for these responsibilities before accepting any "true" submissions into an implementation. Therefore, it is recommended that the
development of an SLA begins now; and appropriate long-term funding paths be identified (whether that is as a social entrepreneurship or through
further non-profit funding sources, or that responsibility will be fully assumed by other organizations); as this is work that involves significant lag time to
accomplish.

This work should not be considered an obstacle to development. Instead, the urgency should be more understood in relationship to 1) ensuring that the
expenses involved in appropriately maintaining a trusted repository can be met, and 2) the related societal expense that would result if media
submitted to the repository was deemed not worthy as court admissible evidence due to the results of up-and-down funding, multiple migrations,
undefined responsibilities, etc.

Digital Object Management
Criteria Met? Current Application Proposed Next Steps Next Phase Priority

B1.1. Repository identifies
properties it will preserve
for digital objects.

Yes see J3M spec review mets and Witness
metadata schema to
incorporate any other
additional requirements

High

B1.2. Repository clearly
specifies the information
that needs to be associated
with digital material at the
time of its deposit(i.e.,
SIP).

Yes See B1.1 Low

B1.3. Repository has
mechanisms to
authenticate the source of
all materials.

Yes Chain of Custody
functionality

Document process and
test

High

B1.4. Repository’s ingest
process verifies each
submitted object (i.e., SIP)
for completeness and

01/17/2018 73/81

? J3M is applied; but what
does this mean interms of
"archival" requirements

see B1.1 Medium

correctness as specified in
B1.5. Repository obtains
sufficient physical control
over the digital objects to
preserve them (Ingest:
content acquisition).

? this falls into service level
which is not yet defined

include in SLA
development

High

B1.6. Repository provides
producer/depositor with
appropriate responses at
predefined points during
the ingest processes.

Partial This system is fairly well
developed on mobile to
server; but admin work and
review of completion of
submit, etc. is not fully
developed yet

Identify strong use cases
and develop

Medium

B1.7. Repository can
demonstrate when
preservation responsibility
is formally accepted for the
contents of the submitted
data objects (i.e., SIPs).

Partial See B1.6 See B1.6 Medium

B1.8. Repository has
contemporaneous records
of actions and
administration processes
that are relevant to
preservation.

No Not met review with UT, IBA and
Witness current practices;
determine next steps for
implementing

Low

B2.1. Repository has an
identifiable, written
definition for each AIP or
class of information
preserved by the
repository.

Partial see B1.1. low

B2.2. Repository has a
definition of each AIP (or
class) that is adequate to
fit longterm preservation
needs.

No Not met See B1.1 Low

B2.3. Repository has a
description of how AIPs are
constructed from SIPs

No Not met See B1.1 Low

B2.4. Repository can
demonstrate that all
submitted objects (i.e.,
SIPs) are either accepted
as whole or part of an
eventual archival object
(i.e., AIP), or otherwise
disposed of in a recorded
fashion.

No Not met See B1.1 Low

B2.5. Repository has and
uses a naming convention
that generates visible,
persistent, unique
identifiers for all archived
objects (i.e., AIPs).

Yes See B1.1 See B1.1 Low

B2.6. If unique identifiers
are associated with SIPs
before ingest, the
repository preserves the
identifiers in a way that
maintains a persistent
association with the
resultant archived object
(e.g., AIP).

Yes See B1.1 See B1.1 Low

B2.7. Repository
demonstrates that it has
access to necessary tools
and resources to establish
authoritative semantic or
technical
context of the digital
objects it contains (i.e.,
access to appropriate
international
Representation Information
and format registries).

No Since this is still a research
implementation not
applicable

Needs to be considered
when developing SLA

High

B2.8 Repository

01/17/2018 74/81

Yes See B1.1 See B1.1 Low

records/registers
Representation Information
(including formats)
ingested.
B2.9 Repository acquires
preservation metadata
(i.e., PDI) for its associated
Content Information.

Yes See B1.1 See B1.1 Low

B2.10 Repository has a
documented process for
testing understandability of
the information content and
bringing the information
content up to the agreed
level of understandability.

No J3M is well documented,
well defined schema, but
not yet tested in a broader
community

Usability testing with IBA
groups + find potential
peer groups to review J3M

Low

B2.11 Repository verifies
each AIP for completeness
and correctness at the
point it is generated.

? Chain of custody is
established, and initial
capture is defined, but full
AIP requirements needed
to be fleshed out, and
system needs to automate
the verification process

Medium

B2.12 Repository provides
an independent mechanism
for audit of the integrity of
the repository
collection/content.

No This is still research
implementation so not
applicable

Performing internal TRAC
audit as first step; meeting
with UT to determine
applicable standards; will
build in necessary features
this round

High

B2.13 Repository has
contemporaneous records
of actions and
administration processes
that are relevant to
preservation (AIP
creation).

No See B2.12 See B2.12 High

B3.1. Repository has
documented preservation
strategies.

No See B2.12 See B2.12 Medium

B3.2. Repository has
mechanisms in place for
monitoring and notification
when Representation
Information (including
formats) approaches
obsolescence or is no
longer viable.

see B2.12 See B2.12 + will include
create of an "archive"
master at time
representations are created

High

B3.3 Repository has
mechanisms to change its
preservation plans as a
result of its monitoring
activities.

Partial InformaCam is an entirely
open-source system, and
any changes required
would be at the discretion
of a group implementing it.

Need to more deeply
consider the malleability of
current stack around the
creation of the media
representations, and the
metadata schema

Medium

B3.4. Repository can
provide evidence of the
effectiveness of its
preservation planning.

No See B2.12 See B2.12 Medium

B4.1. Repository employs
documented preservation
strategies.

No See B2.12 See B2.12 Medium

B4.2. Repository
implements/responds to
strategies for archival
object (i.e., AIP) storage
and migration.

No See B2.12 See B2.12 Medium

B4.3 Repository preserves
the Content Information of
archival objects (i.e.,
AIPs).

Partial See B2.12 See B2.12 Medium

B4.4 Repository actively
monitors integrity of
archival objects (i.e.,
AIPs).

No See B2.12 See B2.12 High

B4.5 Repository has
contemporaneous records
of actions and

01/17/2018 75/81

No See B2.12 See B2.12 High

administration processes
that are relevant to
preservation (Archival
Storage).
B5.1 Repository articulates
minimum metadata
requirements to enable the
designated community to
discover and identify
material of interest.

Yes research implementation
of search feature has been
implemented

Refine geo search; fill out
catalog for better testing;
refine search results

Medium

B5.2 Repository captures
or creates minimum
descriptive metadata and
ensures that it is
associated with the
archived object (i.e., AIP).

Yes J3M is well defined, well
documented
metadataschema currently
implemented

see B2.12 Low

B5.3 Repository can
demonstrate that
referential integrity is
created between all
archived objects (i.e.,
AIPs) and associated
descriptive information.

Partial Representations that See B2.12. Will more
deeply consider longer life
cycles for media in
repository and other
"representations" that will
be created

Medium

B5.4 Repository can
demonstrate that
referential integrity is
maintained between all
archived objects (i.e.,
AIPs) and associated
descriptive information.

Partial see B5.3 See B5.3 Medium

B6.1 Repository
documents and
communicates to its
designated community
what access and delivery
options are available.

Partial Help documentation has
been written; some admin
features exist

Documentation needs to be
refined to reflect
preservation practices
decided on + admin
features need to be built
out to support full life cycle
of media

Medium-High

B6.2 Repository has
implemented a policy for
recording all access
actions (includes requests,
orders etc.) that meet the
requirements of the
repository and information
producers/depositors.

No See B2.12 See B2.12 Low

B6.3 Repository ensures
that agreements applicable
to access conditions are
adhered to.

No As research
implementation not
applicable

See B2.12 High

B6.4 Repository has
documented and
implemented access
policies (authorization
rules, authentication
requirements) consistent
with deposit agreements
for stored objects.

No users submitting to system
must have registered cert
with system; though
installation of app is
open/uncertain of rules and
authentication is applied as
full open source app

See B6.3 High

B6.5 Repository access
management system fully
implements access policy.

No See B6.4 High

B6.6 Repository logs all
access management
failures, and staff review
inappropriate “access
denial” incidents.

No Research implementation,
so not yet developed

Need to implement a more
robust log system for all
activities

High

B6.7 Repository can
demonstrate that the
process that generates the
requested digital object(s)
(i.e., DIP) is completed in
relation to the request.

Partial Chain of custody is
currently maintained

Need to implement an
more robust log system for
all activities

High

B6.8 Repository can
demonstrate that the
process that generates the
requested digital object(s)

01/17/2018 76/81

No See B6.7 See B6.7 High

(i.e., DIP) is correct in
relation to the request.
B6.9 Repository
demonstrates that all
access requests result in a
response of acceptance or
rejection.

Partial see B6.7 see B6.7 High

B6.10 Repository enables
the dissemination of
authentic copies of the orig

No Focus is on sharing the
representations

Full life cycle and admin
features still need to be
defined and developed

Medium

Digital Object Management Conclusions

Much of this section is related to the metadata that is associated with submitted media. The J3M schema is a great start, and it has already been
identified that METs and other archival metadata could be wrapped around the J3M at time of submission. The next phase would include some work to
review and incorporate any additional metadata that is determined useful/necessary. In addition, the server-side schema should be fleshed out more to
maintain relationships between representations of an original, and their corresponding metadata and any related technical documentation.

However, it is also important to more clearly define who the "designated" communities are, and what their acceptable "access" levels will be. While a
PEM file is created for any user submitting media, user authentication through the web admin interface is not tied to this. Varying permission levels are
not associated with the various user actions. Certain user actions that can be performed on an object are not appropriately tied to a corresponding
user identity. Searchable/readily useable logs of all system actions do not exist. And formal "preservation strategies" still need to be defined before the
system can accept responsibility for media.

Technologies, Technical Infrastructure & Security
Criteria Met? Current Application Proposed Next Steps Next Phase Priority

C1.1 Repository functions
on well-supported
operating systems and
other core infrastructural
software.

Partial Technologies chosen for
the informacam stack are
strong; however, as a
research implementation a
full community for
"informaCam" needs to be
developed

identify existing
open-source communities
that would have an interest
in technology; promote
informacam

Medium

C1.2 Repository ensures
that it has adequate
hardware and software
support for backup
functionality sufficient for
the repository’s services
and for the data held, e.g.,
metadata associated with
access controls, repository
main content.

No Research implementation/
not applicable yet

See A2.1 High

C1.3 Repository manages
the number and location of
copies of all digital objects.

Partial See B5.3 See B5.3 Medium

C1.4 Repository has
mechanisms in place to
ensure any/multiple copies
of digital objects are
synchronized.

Partial See B5.3 See B5.3 Medium

C1.5 Repository has
effective mechanisms to
detect bit corruption or
loss.

No As research
implementation not yet
established

Meet with UT; identify
other repo apps approach
to this; build out

High

C1.6 Repository reports to
its administration all
incidents of data corruption
or loss, and steps taken to
repair/replace corrupt or
lost data.

No See C1.5 C1.5

C1.7 Repository has
defined processes for
storage media and/or
hardware change (e.g.,
refreshing, migration).

No see B2.12 see B2.12 Medium

C1.8 Repository has a
documented change
management process that
identifies changes to
critical processes that
potentially affect the
repository’s ability to

01/17/2018 77/81

No See B2.12 See B2.12 Medium

comply with its mandatory
responsibilities.
C1.9 Repository has a
process for testing the
effect of critical changes to
the system.

No As research
implementation, not
applicable

Can include in review of
current witness practices,
etc.

Low

C1.10 Repository has a
process to react to the
availability of new software
security updates based on
a risk-benefit assessment.

No Currently building out a
chef recipe for automated
builds

create a build process that
will enable for more rapid,
and recordable updates of
system when security
updates become available.
(is chef too time consuming
to maintain; will software
patches + upgrades
realistically get updated in
chef file ??)

High

C2.1 Repository has
hardware technologies
appropriate to the services
it provides to its designated
communities and has
procedures in place to
receive and monitor
notifications, and evaluate
when hardware technology
changes are needed.

Partial Technologies selected are
appropriate for research
implementation

Formal notification
practices need to be
established once service
ownership is also
established

Low

C2.2 Repository has
software technologies
appropriate to the services
it provides to its designated
community(ies) and has
procedures in place to
receive and monitor
notifications, and evaluate
when software

Partial Technologies selected are
appropriate for long-term
implementations (Java
version will be
revised/dependence on
Matlab is being removed

See C2.1 Medium

C3.1 Repository maintains
a systematic analysis of
such factors as data,
systems, personnel,
physical plant, and security
needs.

No Not applicable as a
research implementation

Include this in
development of SLA

High

C3.2 Repository has
implemented controls to
adequately address each
of the defined security
needs.

No See C3.1 See C3.1 High

C3.3 Repository staff have
delineated roles,
responsibilities, and
authorizations related to
implementing changes
within the system.

No See A2.1 See A2.1 Medium

C3.4 Repository has
suitable written disaster
preparedness and recovery
plan(s), including at least
one off-site backup of all
preserved information
together with an offsite
copy of the recovery
plan(s).

No As research
implementation, not
applicable

Make part of SLA
development

Urgent

Technologies, Technical Infrastructure & Security Conclusions

Security of the media and its corresponding chain of custody is a strength of the InformaCam research implementation. So, it makes sense that many
of the weaknesses identified in this section actually correspond to the criteria that must be addressed as urgent in the Organizational Infrastructure.
For example, it is urgent that back-up systems be in place before InformaCam begin accepting responsibility for media; however, the full responsibility
and funding for this work still needs to be defined.

However, there are some items that directly relate to software development in this next phase as well. As identified in the previous section,
searchable/readily useable logs of all system actions needs to be developed. Synchronization between representations and original media
submissions needs to be accurately maintained. Dependence on non-standard Java and on Matlab needs to be phased out. And automated bitsum
checks and bit corrosion checks needs to be created.

01/17/2018 78/81

Final Conclusions
Overall, the InformaCam system is heading in an appropriate direction. Many of the priorities that have been identified are natural steps within a system
that is evolving towards service quality. However, out of this internal audit, the following items should be considered for development in this next
phase, either to ensure the system is being developed in way that it can verify data integrity using industry standards, or to ensure the appropriate
resources are dedicated to ensure full responsibility for court-admissible evidence is maintained:

1. SLA development
Guardian project needs to develop an SLA between any organization that it is providing "trusted" digital repository services for. This SLA must define,
but is not limited to the following:
 - a repository mission
 - the types of media that will be accepted into the repository (i.e., the types of media the repo can assure it can maintain access and integrity of)
 - ownership / intellectual property rights established for media submitted
 - the preservation standards that will be met for any media submitted
 - what level of security that will be maintained
 - who are the people (designated communities) that will be allowed access and how
 - what audit tools will be used to verify integrity of repo
 - which organization will be responsible for which service entity (e.g., who is running the servers, who is maintaining bug reports, who is running
helpdesk, etc.)
 - contingency plans in place for failure of service
 - contingency plans in place for loss of funding/organizational structure

 - and last, and most importantly, how funding will be provided to ensure the trusted digital repository requirements can be met

2. Business plan

Long-term funding for the digital repository services must be defined. This could be as a social venture, it could be to continue to maintain strong
relationships with non-profit granting agencies, it could be to develop deep partnerships with viable organizations, or it could be some combination of
these three. Potential partner organizations could be for-profit (e.g., Google), governments (e.g., E.U.), or research institutions with leading and
committed digital repository programs (e.g., Yale, Cambridge, UC Berkeley, etc.)

3. Metadata extended

The J3M metadata schema was not been designed against METS or other digital repository schema systems. This is not a shortcoming, since the
schema is appropriate for its location/purpose. However, work must be done during this phase to identify a path to integrate incoming J3M metadata
with METS, as well as some other metadata standards that have been identified as already in use (e.g, the schema developed with UT and Witness).

In addition, a more robust and malleable means for maintaining relationships (and their associated metadata) between representations and the
originating media submission, needs to be developed/incorporated within this server-side metadata schema.

4. Preservation Standards

Formal preservation practices for the video and images accepted to InformaCam should be established. Video and digital image preservation is a fairly
well established field at this point, and several leading organizations (e.g., Library of Congress, etc.) have published standards that be readily adopted.
However, once standards are selected, some software changes will also be necessary to implement (e.g., if the best practice preservation format for
images is considered to be TIFF, the InformaCam Server will create this format at time of ingest, as well as the web-ready representations, etc.).

5. Build Out Audit-able Repo Tools
Software development is needed to create a robust evidence log of all system actions; including:
 - any connections made to the system and by actor (user or system)
 - any basic user actions taken (e.g., annotation added, new representation created, representation viewed, new master created, etc.)
 - any system notifications sent (e.g., software update needed, unusual behavior detected, etc.)
 - any system updates made (e.g., patch added, stack software updated, etc.)
 - when checksum and bit corrosion checks were made
 - {add to this after UT conversation}

In addition, a system to automate checksum and bit corrosions checks needs to be developed.

6. Designed Communities and Corresponding Access Levels

The permissions/authentication on the server side needs to be enhanced to better support more granular levels of access. E.g., view privileges of a
media submissions, vs. annotation rights, vs. download of original, etc. This granular levels of access also need to be recorded within the evidence
logs. In addition, if this phase of development will also include the creation of feeds/sharing with more "public" community, the software will also need
to be enhanced to maintain distinctions between the "vault" containing the originating media, and a front-end that many, varying users could be hitting
with a public URL/access point.

01/17/2018 79/81

Trusted Destinations
Trusted Destinations are installed onto the device by obtaining an .ictd file and opening it in the app. The ICTD file is unique to each organization and
contains the information required by the user to successfully send data to the destination.

The manifest is a JSON-formatted document, containing the following:

{
 "organizationName":"Trusted Destination Name",
 "organizationDetails":"London, UK",
 "repositories":[
 {
 "source":"google_drive",
 "asset_root":"ID of the folder in which we drop media"
 }
],
 "forms:[
 "Base-64 encoded, GZipped, xml form data (javarosa/open data kit compliant)"
],
 "publicKey": "Base-64 encoded, GZipped public key block",
 "organizationFingerprint":"PGP FINGERPRINT"
}

View an example here: http://ec2-54-235-36-217.compute-1.amazonaws.com/informacam/

01/17/2018 80/81

http://ec2-54-235-36-217.compute-1.amazonaws.com/informacam/

Uploading Media to Trusted Destination Server (old version)
When the user finishes creating an image or video in InformaCam, it automatically uploads to the chosen trusted destinations. This document explains
that process.

Saving media
Upon saving an image or video, the device will generate a random public/private keypair that encrypts the metadata. This key can be used only by the
device to access a source image's metadata. When the user is connected to the internet, the upload process begins.

Request for upload
For each selected trusted destination, the device must request an upload ticket. This transaction is carried out via the trusted destination's hidden
service address (which is held in the device's encrypted database.)

For each upload, the Trusted Destination's server will generate an upload ticket containing a one-time-use password to encrypt the image/video. The
device must then re-encrypt the metadata bundle with this password using AES encryption. Once the media is stored on the Trusted Destination's
server, the media's metadata can only be decrypted with this password.
Upon request, the device must submit the following data:
 1. the SHA-1 hash of the unredacted data to be uploaded
 2. the SHA-1 hash of the redacted data to be uploaded
 3. the number of bytes to be transmitted
 4. the PGP key of the user's device (each device generates its own PGP key that is signed by the user upon initiation)

In response, (if approved) the server generates a [[one-time-use authentication token]] to the device to initiate upload. The server creates a unique,
one-time-use user for this upload, and adds the user's unique ID to a queue of uploads to collect and then move to the main media repository upon
successful upload. (This user ID is to be deactivated and removed upon successful upload.)

Uploading process
After receiving the authentication token, the user transmits the media via SSH over Tor via a background service on the app. Once the number of
bytes declared in step 1 have been transmitted, the server must validate the hash of both the unredacted and redacted data to verify that the media
received is the same as the media uploaded. Successful verification triggers a response to the user's device that the media has been accepted and
stored by the trusted destination.

Upon successful transmission
Once the image or video has been successfully transmitted, the InformaCam-generated PGP key of the device is logged. If the administrator acting on
behalf of the trusted destination desires to get in contact with the user, connection may be initiated via this key.

01/17/2018 81/81

	AmazonAws
	API
	App
	Build-and-Target-Notes
	Building-Installing-System-Dependencies
	InformaCam_Server_Installation_Instructions_1110_with_GeoCouch
	InformaCam_Server_Installation_Instructions_v1

	Desktop
	Forms
	InformaCam_Server_Standard_Video_Resolutions
	One-time-use_authentication_token
	Overview
	API_Design
	How_InformaCam_Works
	InformaCam_Dashboard_v2_Design
	InformaCam_documentation_V2
	InformaCam_Server_documentation_V2_
	InformaCam_Trusted_Destination_(ICTD)
	JSON_Mobile_Media_Metadata_(J3M)
	Potential_Approaches_for_InformaCam_Server_Secure_API
	Supported_Devices
	Version_1
	Build_InformaCam_from_Source

	Stack
	System
	Server_Architecture_v2

	ThreatModel
	TRAC_Internal_Review_-_January_2013
	TrustedDestinations
	Upload_media

